Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the built-in SQLite to the latest 3.40.0 alpha version. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA3-256: |
f44b8326fc1f9c091d1839b48f9216e4 |
User & Date: | drh 2022-08-23 12:50:12.990 |
Context
2022-09-30
| ||
12:28 | Correction to the documentation of the "wapp" command. (check-in: 4cc307273e user: drh tags: trunk) | |
2022-08-23
| ||
12:50 | Update the built-in SQLite to the latest 3.40.0 alpha version. (check-in: f44b8326fc user: drh tags: trunk) | |
2022-08-01
| ||
10:21 | Remove application code that was accidentally pasted into commands.md. Forum post 73a0daf2d9. (check-in: a75c921e06 user: drh tags: trunk) | |
Changes
Changes to tclsqlite3.c.
︙ | ︙ | |||
451 452 453 454 455 456 457 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.40.0" #define SQLITE_VERSION_NUMBER 3040000 | | | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.40.0" #define SQLITE_VERSION_NUMBER 3040000 #define SQLITE_SOURCE_ID "2022-08-22 15:18:37 c296a9d958ec360fc8d217363348b4918d665bccb3c4f27503a2dcef7db49052" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 | ** (Mutexes will block any actual concurrency, but in this mode ** there is no harm in trying.) ** ** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt> ** <dd>The database is opened [shared cache] enabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** ** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt> ** <dd>The database is opened [shared cache] disabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** ** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt> | > > > | 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 | ** (Mutexes will block any actual concurrency, but in this mode ** there is no harm in trying.) ** ** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt> ** <dd>The database is opened [shared cache] enabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** The [use of shared cache mode is discouraged] and hence shared cache ** capabilities may be omitted from many builds of SQLite. In such cases, ** this option is a no-op. ** ** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt> ** <dd>The database is opened [shared cache] disabled, overriding ** the default shared cache setting provided by ** [sqlite3_enable_shared_cache()].)^ ** ** [[OPEN_EXRESCODE]] ^(<dt>[SQLITE_OPEN_EXRESCODE]</dt> |
︙ | ︙ | |||
6768 6769 6770 6771 6772 6773 6774 | ** CAPI3REF: Autovacuum Compaction Amount Callback ** METHOD: sqlite3 ** ** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback ** function C that is invoked prior to each autovacuum of the database ** file. ^The callback is passed a copy of the generic data pointer (P), ** the schema-name of the attached database that is being autovacuumed, | | | 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 | ** CAPI3REF: Autovacuum Compaction Amount Callback ** METHOD: sqlite3 ** ** ^The sqlite3_autovacuum_pages(D,C,P,X) interface registers a callback ** function C that is invoked prior to each autovacuum of the database ** file. ^The callback is passed a copy of the generic data pointer (P), ** the schema-name of the attached database that is being autovacuumed, ** the size of the database file in pages, the number of free pages, ** and the number of bytes per page, respectively. The callback should ** return the number of free pages that should be removed by the ** autovacuum. ^If the callback returns zero, then no autovacuum happens. ** ^If the value returned is greater than or equal to the number of ** free pages, then a complete autovacuum happens. ** ** <p>^If there are multiple ATTACH-ed database files that are being |
︙ | ︙ | |||
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 | /* ** CAPI3REF: Enable Or Disable Shared Pager Cache ** ** ^(This routine enables or disables the sharing of the database cache ** and schema data structures between [database connection | connections] ** to the same database. Sharing is enabled if the argument is true ** and disabled if the argument is false.)^ ** ** ^Cache sharing is enabled and disabled for an entire process. ** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]). ** In prior versions of SQLite, ** sharing was enabled or disabled for each thread separately. ** ** ^(The cache sharing mode set by this interface effects all subsequent | > > > > > | 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 | /* ** CAPI3REF: Enable Or Disable Shared Pager Cache ** ** ^(This routine enables or disables the sharing of the database cache ** and schema data structures between [database connection | connections] ** to the same database. Sharing is enabled if the argument is true ** and disabled if the argument is false.)^ ** ** This interface is omitted if SQLite is compiled with ** [-DSQLITE_OMIT_SHARED_CACHE]. The [-DSQLITE_OMIT_SHARED_CACHE] ** compile-time option is recommended because the ** [use of shared cache mode is discouraged]. ** ** ^Cache sharing is enabled and disabled for an entire process. ** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]). ** In prior versions of SQLite, ** sharing was enabled or disabled for each thread separately. ** ** ^(The cache sharing mode set by this interface effects all subsequent |
︙ | ︙ | |||
6987 6988 6989 6990 6991 6992 6993 | ** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1). ** ** ^Setting the heap limits to zero disables the heap limiter mechanism. ** ** ^The soft heap limit may not be greater than the hard heap limit. ** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N) ** is invoked with a value of N that is greater than the hard heap limit, | | | 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 | ** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1). ** ** ^Setting the heap limits to zero disables the heap limiter mechanism. ** ** ^The soft heap limit may not be greater than the hard heap limit. ** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N) ** is invoked with a value of N that is greater than the hard heap limit, ** the soft heap limit is set to the value of the hard heap limit. ** ^The soft heap limit is automatically enabled whenever the hard heap ** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and ** the soft heap limit is outside the range of 1..N, then the soft heap ** limit is set to N. ^Invoking sqlite3_soft_heap_limit64(0) when the ** hard heap limit is enabled makes the soft heap limit equal to the ** hard heap limit. ** |
︙ | ︙ | |||
9282 9283 9284 9285 9286 9287 9288 | ** However, the application must guarantee that the destination ** [database connection] is not passed to any other API (by any thread) after ** sqlite3_backup_init() is called and before the corresponding call to ** sqlite3_backup_finish(). SQLite does not currently check to see ** if the application incorrectly accesses the destination [database connection] ** and so no error code is reported, but the operations may malfunction ** nevertheless. Use of the destination database connection while a | | | 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 | ** However, the application must guarantee that the destination ** [database connection] is not passed to any other API (by any thread) after ** sqlite3_backup_init() is called and before the corresponding call to ** sqlite3_backup_finish(). SQLite does not currently check to see ** if the application incorrectly accesses the destination [database connection] ** and so no error code is reported, but the operations may malfunction ** nevertheless. Use of the destination database connection while a ** backup is in progress might also cause a mutex deadlock. ** ** If running in [shared cache mode], the application must ** guarantee that the shared cache used by the destination database ** is not accessed while the backup is running. In practice this means ** that the application must guarantee that the disk file being ** backed up to is not accessed by any connection within the process, ** not just the specific connection that was passed to sqlite3_backup_init(). |
︙ | ︙ | |||
9710 9711 9712 9713 9714 9715 9716 | ** These constants define all valid values for the "checkpoint mode" passed ** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface. ** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the ** meaning of each of these checkpoint modes. */ #define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */ #define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */ | | | 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 | ** These constants define all valid values for the "checkpoint mode" passed ** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface. ** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the ** meaning of each of these checkpoint modes. */ #define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */ #define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */ #define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for readers */ #define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */ /* ** CAPI3REF: Virtual Table Interface Configuration ** ** This function may be called by either the [xConnect] or [xCreate] method ** of a [virtual table] implementation to configure |
︙ | ︙ | |||
16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 | LookasideSlot *pSmallInit; /* List of small buffers not prediously used */ LookasideSlot *pSmallFree; /* List of available small buffers */ void *pMiddle; /* First byte past end of full-size buffers and ** the first byte of LOOKASIDE_SMALL buffers */ #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ void *pStart; /* First byte of available memory space */ void *pEnd; /* First byte past end of available space */ }; struct LookasideSlot { LookasideSlot *pNext; /* Next buffer in the list of free buffers */ }; #define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0 #define EnableLookaside db->lookaside.bDisable--;\ | > | 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 | LookasideSlot *pSmallInit; /* List of small buffers not prediously used */ LookasideSlot *pSmallFree; /* List of available small buffers */ void *pMiddle; /* First byte past end of full-size buffers and ** the first byte of LOOKASIDE_SMALL buffers */ #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ void *pStart; /* First byte of available memory space */ void *pEnd; /* First byte past end of available space */ void *pTrueEnd; /* True value of pEnd, when db->pnBytesFreed!=0 */ }; struct LookasideSlot { LookasideSlot *pNext; /* Next buffer in the list of free buffers */ }; #define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0 #define EnableLookaside db->lookaside.bDisable--;\ |
︙ | ︙ | |||
19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 | SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64); SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3*,const char*,const char*); SQLITE_PRIVATE void *sqlite3Realloc(void*, u64); SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64); SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*); SQLITE_PRIVATE int sqlite3MallocSize(const void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, const void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); | > | 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 | SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, u64); SQLITE_PRIVATE char *sqlite3DbSpanDup(sqlite3*,const char*,const char*); SQLITE_PRIVATE void *sqlite3Realloc(void*, u64); SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, u64); SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3*, void*); SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3*, void*); SQLITE_PRIVATE int sqlite3MallocSize(const void*); SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, const void*); SQLITE_PRIVATE void *sqlite3PageMalloc(int); SQLITE_PRIVATE void sqlite3PageFree(void*); SQLITE_PRIVATE void sqlite3MemSetDefault(void); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); |
︙ | ︙ | |||
20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 | SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64); SQLITE_PRIVATE void sqlite3Int64ToText(i64,char*); SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*); SQLITE_PRIVATE int sqlite3Atoi(const char*); #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar); | > | 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 | SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64); SQLITE_PRIVATE i64 sqlite3RealToI64(double); SQLITE_PRIVATE void sqlite3Int64ToText(i64,char*); SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*); SQLITE_PRIVATE int sqlite3Atoi(const char*); #ifndef SQLITE_OMIT_UTF16 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar); |
︙ | ︙ | |||
21637 21638 21639 21640 21641 21642 21643 | #endif #ifdef SQLITE_OMIT_WSD "OMIT_WSD", #endif #ifdef SQLITE_OMIT_XFER_OPT "OMIT_XFER_OPT", #endif | < < < | 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 | #endif #ifdef SQLITE_OMIT_WSD "OMIT_WSD", #endif #ifdef SQLITE_OMIT_XFER_OPT "OMIT_XFER_OPT", #endif #ifdef SQLITE_PERFORMANCE_TRACE "PERFORMANCE_TRACE", #endif #ifdef SQLITE_POWERSAFE_OVERWRITE # if SQLITE_POWERSAFE_OVERWRITE != 1 "POWERSAFE_OVERWRITE=" CTIMEOPT_VAL(SQLITE_POWERSAFE_OVERWRITE), # endif |
︙ | ︙ | |||
23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 | */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ sqlite3BtreeEnterAll(db); db->pnBytesFreed = &nByte; for(i=0; i<db->nDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( pSchema->tblHash.count | > > | 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 | */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ sqlite3BtreeEnterAll(db); db->pnBytesFreed = &nByte; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; for(i=0; i<db->nDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( pSchema->tblHash.count |
︙ | ︙ | |||
23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 | } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; sqlite3BtreeLeaveAll(db); *pHighwater = 0; *pCurrent = nByte; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store all prepared statements. ** *pHighwater is set to zero. */ case SQLITE_DBSTATUS_STMT_USED: { struct Vdbe *pVdbe; /* Used to iterate through VMs */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ sqlite3VdbeDelete(pVdbe); } db->pnBytesFreed = 0; *pHighwater = 0; /* IMP: R-64479-57858 */ *pCurrent = nByte; break; } | > > > > | 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 | } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; db->lookaside.pEnd = db->lookaside.pTrueEnd; sqlite3BtreeLeaveAll(db); *pHighwater = 0; *pCurrent = nByte; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store all prepared statements. ** *pHighwater is set to zero. */ case SQLITE_DBSTATUS_STMT_USED: { struct Vdbe *pVdbe; /* Used to iterate through VMs */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ sqlite3VdbeDelete(pVdbe); } db->lookaside.pEnd = db->lookaside.pTrueEnd; db->pnBytesFreed = 0; *pHighwater = 0; /* IMP: R-64479-57858 */ *pCurrent = nByte; break; } |
︙ | ︙ | |||
24039 24040 24041 24042 24043 24044 24045 | ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( sqlite3_strnicmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 | | | 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 | ** ** Move the date to the same time on the next occurrence of ** weekday N where 0==Sunday, 1==Monday, and so forth. If the ** date is already on the appropriate weekday, this is a no-op. */ if( sqlite3_strnicmp(z, "weekday ", 8)==0 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0 && r>=0.0 && r<7.0 && (n=(int)r)==r ){ sqlite3_int64 Z; computeYMD_HMS(p); p->validTZ = 0; p->validJD = 0; computeJD(p); Z = ((p->iJD + 129600000)/86400000) % 7; if( Z>n ) Z -= 7; |
︙ | ︙ | |||
24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 | ){ int rc; DO_OS_MALLOC_TEST(0); /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut); assert( rc==SQLITE_OK || pFile->pMethods==0 ); return rc; } SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ DO_OS_MALLOC_TEST(0); assert( dirSync==0 || dirSync==1 ); | > | 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 | ){ int rc; DO_OS_MALLOC_TEST(0); /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before ** reaching the VFS. */ assert( zPath || (flags & SQLITE_OPEN_EXCLUSIVE) ); rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut); assert( rc==SQLITE_OK || pFile->pMethods==0 ); return rc; } SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ DO_OS_MALLOC_TEST(0); assert( dirSync==0 || dirSync==1 ); |
︙ | ︙ | |||
29102 29103 29104 29105 29106 29107 29108 | } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, const void *p){ | | | 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 | } /* ** TRUE if p is a lookaside memory allocation from db */ #ifndef SQLITE_OMIT_LOOKASIDE static int isLookaside(sqlite3 *db, const void *p){ return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd); } #else #define isLookaside(A,B) 0 #endif /* ** Return the size of a memory allocation previously obtained from |
︙ | ︙ | |||
29126 29127 29128 29129 29130 29131 29132 | #else return db->lookaside.szTrue; #endif } SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, const void *p){ assert( p!=0 ); #ifdef SQLITE_DEBUG | < | | | | | | < | | 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 | #else return db->lookaside.szTrue; #endif } SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, const void *p){ assert( p!=0 ); #ifdef SQLITE_DEBUG if( db==0 ){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); }else if( !isLookaside(db,p) ){ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); } #endif if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ assert( sqlite3_mutex_held(db->mutex) ); return LOOKASIDE_SMALL; } #endif if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ |
︙ | ︙ | |||
29193 29194 29195 29196 29197 29198 29199 | ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. */ SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( db ){ | < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 | ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. */ SQLITE_PRIVATE void sqlite3DbFreeNN(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( db ){ if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } SQLITE_PRIVATE void sqlite3DbNNFreeNN(sqlite3 *db, void *p){ assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); assert( p!=0 ); if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pSmallFree; db->lookaside.pSmallFree = pBuf; return; } #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ LookasideSlot *pBuf = (LookasideSlot*)p; assert( db->pnBytesFreed==0 ); #ifdef SQLITE_DEBUG memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ #endif pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; return; } } if( db->pnBytesFreed ){ measureAllocationSize(db, p); return; } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( p ) sqlite3DbFreeNN(db, p); } /* |
︙ | ︙ | |||
32337 32338 32339 32340 32341 32342 32343 | /* #include "sqliteInt.h" */ /* All threads share a single random number generator. ** This structure is the current state of the generator. */ static SQLITE_WSD struct sqlite3PrngType { | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > < | 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 | /* #include "sqliteInt.h" */ /* All threads share a single random number generator. ** This structure is the current state of the generator. */ static SQLITE_WSD struct sqlite3PrngType { u32 s[16]; /* 64 bytes of chacha20 state */ u8 out[64]; /* Output bytes */ u8 n; /* Output bytes remaining */ } sqlite3Prng; /* The RFC-7539 ChaCha20 block function */ #define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) #define QR(a, b, c, d) ( \ a += b, d ^= a, d = ROTL(d,16), \ c += d, b ^= c, b = ROTL(b,12), \ a += b, d ^= a, d = ROTL(d, 8), \ c += d, b ^= c, b = ROTL(b, 7)) static void chacha_block(u32 *out, const u32 *in){ int i; u32 x[16]; memcpy(x, in, 64); for(i=0; i<10; i++){ QR(x[0], x[4], x[ 8], x[12]); QR(x[1], x[5], x[ 9], x[13]); QR(x[2], x[6], x[10], x[14]); QR(x[3], x[7], x[11], x[15]); QR(x[0], x[5], x[10], x[15]); QR(x[1], x[6], x[11], x[12]); QR(x[2], x[7], x[ 8], x[13]); QR(x[3], x[4], x[ 9], x[14]); } for(i=0; i<16; i++) out[i] = x[i]+in[i]; } /* ** Return N random bytes. */ SQLITE_API void sqlite3_randomness(int N, void *pBuf){ unsigned char *zBuf = pBuf; /* The "wsdPrng" macro will resolve to the pseudo-random number generator ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdPrng can refer directly ** to the "sqlite3Prng" state vector declared above. |
︙ | ︙ | |||
32376 32377 32378 32379 32380 32381 32382 | #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); #endif sqlite3_mutex_enter(mutex); if( N<=0 || pBuf==0 ){ | | | < < < < < < | < | > > | < | | < < < < < | < | < | < > > > | > > | > | | > | | | < > | 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 | #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); #endif sqlite3_mutex_enter(mutex); if( N<=0 || pBuf==0 ){ wsdPrng.s[0] = 0; sqlite3_mutex_leave(mutex); return; } /* Initialize the state of the random number generator once, ** the first time this routine is called. */ if( wsdPrng.s[0]==0 ){ sqlite3_vfs *pVfs = sqlite3_vfs_find(0); static const u32 chacha20_init[] = { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 }; memcpy(&wsdPrng.s[0], chacha20_init, 16); if( NEVER(pVfs==0) ){ memset(&wsdPrng.s[4], 0, 44); }else{ sqlite3OsRandomness(pVfs, 44, (char*)&wsdPrng.s[4]); } wsdPrng.s[15] = wsdPrng.s[12]; wsdPrng.s[12] = 0; wsdPrng.n = 0; } assert( N>0 ); while( 1 /* exit by break */ ){ if( N<=wsdPrng.n ){ memcpy(zBuf, &wsdPrng.out[wsdPrng.n-N], N); wsdPrng.n -= N; break; } if( wsdPrng.n>0 ){ memcpy(zBuf, wsdPrng.out, wsdPrng.n); N -= wsdPrng.n; zBuf += wsdPrng.n; } wsdPrng.s[12]++; chacha_block((u32*)wsdPrng.out, wsdPrng.s); wsdPrng.n = 64; } sqlite3_mutex_leave(mutex); } #ifndef SQLITE_UNTESTABLE /* ** For testing purposes, we sometimes want to preserve the state of ** PRNG and restore the PRNG to its saved state at a later time, or |
︙ | ︙ | |||
43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 | /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==29 ); /* Register all VFSes defined in the aVfs[] array */ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ sqlite3_vfs_register(&aVfs[i], i==0); } unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #ifndef SQLITE_OMIT_WAL /* Validate lock assumptions */ assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */ assert( UNIX_SHM_BASE==120 ); /* Start of locking area */ | > > > > > | 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 | /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==29 ); /* Register all VFSes defined in the aVfs[] array */ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ #ifdef SQLITE_DEFAULT_UNIX_VFS sqlite3_vfs_register(&aVfs[i], 0==strcmp(aVfs[i].zName,SQLITE_DEFAULT_UNIX_VFS)); #else sqlite3_vfs_register(&aVfs[i], i==0); #endif } unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1); #ifndef SQLITE_OMIT_WAL /* Validate lock assumptions */ assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */ assert( UNIX_SHM_BASE==120 ); /* Start of locking area */ |
︙ | ︙ | |||
51946 51947 51948 51949 51950 51951 51952 | ** ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this ** size can vary according to architecture, compile-time options, and ** SQLite library version number. ** | | > | < | > > | < | 52021 52022 52023 52024 52025 52026 52027 52028 52029 52030 52031 52032 52033 52034 52035 52036 52037 52038 52039 52040 52041 | ** ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this ** size can vary according to architecture, compile-time options, and ** SQLite library version number. ** ** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER ** was defined, then the page content would be held in a separate memory ** allocation from the PgHdr1. This was intended to avoid clownshoe memory ** allocations. However, the btree layer needs a small (16-byte) overrun ** area after the page content buffer. The header serves as that overrun ** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid ** any possibility of a memory error. ** ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates ** with this module. Information is passed back and forth as PgHdr1 pointers. ** ** The pcache.c and pager.c modules deal pointers to PgHdr objects. ** The btree.c module deals with pointers to MemPage objects. ** |
︙ | ︙ | |||
51996 51997 51998 51999 52000 52001 52002 | typedef struct PCache1 PCache1; typedef struct PgHdr1 PgHdr1; typedef struct PgFreeslot PgFreeslot; typedef struct PGroup PGroup; /* ** Each cache entry is represented by an instance of the following | | | | > > > > > | | 52072 52073 52074 52075 52076 52077 52078 52079 52080 52081 52082 52083 52084 52085 52086 52087 52088 52089 52090 52091 52092 52093 52094 52095 | typedef struct PCache1 PCache1; typedef struct PgHdr1 PgHdr1; typedef struct PgFreeslot PgFreeslot; typedef struct PGroup PGroup; /* ** Each cache entry is represented by an instance of the following ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated ** directly before this structure and is used to cache the page content. ** ** When reading a corrupt database file, it is possible that SQLite might ** read a few bytes (no more than 16 bytes) past the end of the page buffer. ** It will only read past the end of the page buffer, never write. This ** object is positioned immediately after the page buffer to serve as an ** overrun area, so that overreads are harmless. ** ** Variables isBulkLocal and isAnchor were once type "u8". That works, ** but causes a 2-byte gap in the structure for most architectures (since ** pointers must be either 4 or 8-byte aligned). As this structure is located ** in memory directly after the associated page data, if the database is ** corrupt, code at the b-tree layer may overread the page buffer and ** read part of this structure before the corruption is detected. This ** can cause a valgrind error if the unitialized gap is accessed. Using u16 ** ensures there is no such gap, and therefore no bytes of unitialized memory |
︙ | ︙ | |||
52345 52346 52347 52348 52349 52350 52351 | ** is because it might call sqlite3_release_memory(), which assumes that ** this mutex is not held. */ assert( pcache1.separateCache==0 ); assert( pCache->pGroup==&pcache1.grp ); pcache1LeaveMutex(pCache->pGroup); #endif if( benignMalloc ){ sqlite3BeginBenignMalloc(); } | < < < < < < < < < < < < | 52426 52427 52428 52429 52430 52431 52432 52433 52434 52435 52436 52437 52438 52439 52440 52441 52442 52443 52444 52445 52446 | ** is because it might call sqlite3_release_memory(), which assumes that ** this mutex is not held. */ assert( pcache1.separateCache==0 ); assert( pCache->pGroup==&pcache1.grp ); pcache1LeaveMutex(pCache->pGroup); #endif if( benignMalloc ){ sqlite3BeginBenignMalloc(); } pPg = pcache1Alloc(pCache->szAlloc); if( benignMalloc ){ sqlite3EndBenignMalloc(); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT pcache1EnterMutex(pCache->pGroup); #endif if( pPg==0 ) return 0; p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; p->page.pBuf = pPg; p->page.pExtra = &p[1]; p->isBulkLocal = 0; p->isAnchor = 0; p->pLruPrev = 0; /* Initializing this saves a valgrind error */ } (*pCache->pnPurgeable)++; |
︙ | ︙ | |||
52387 52388 52389 52390 52391 52392 52393 | pCache = p->pCache; assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); if( p->isBulkLocal ){ p->pNext = pCache->pFree; pCache->pFree = p; }else{ pcache1Free(p->page.pBuf); | < < < | 52456 52457 52458 52459 52460 52461 52462 52463 52464 52465 52466 52467 52468 52469 | pCache = p->pCache; assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); if( p->isBulkLocal ){ p->pNext = pCache->pFree; pCache->pFree = p; }else{ pcache1Free(p->page.pBuf); } (*pCache->pnPurgeable)--; } /* ** Malloc function used by SQLite to obtain space from the buffer configured ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer |
︙ | ︙ | |||
53153 53154 53155 53156 53157 53158 53159 | PgHdr1 *p; pcache1EnterMutex(&pcache1.grp); while( (nReq<0 || nFree<nReq) && (p=pcache1.grp.lru.pLruPrev)!=0 && p->isAnchor==0 ){ nFree += pcache1MemSize(p->page.pBuf); | < < < | 53219 53220 53221 53222 53223 53224 53225 53226 53227 53228 53229 53230 53231 53232 | PgHdr1 *p; pcache1EnterMutex(&pcache1.grp); while( (nReq<0 || nFree<nReq) && (p=pcache1.grp.lru.pLruPrev)!=0 && p->isAnchor==0 ){ nFree += pcache1MemSize(p->page.pBuf); assert( PAGE_IS_UNPINNED(p) ); pcache1PinPage(p); pcache1RemoveFromHash(p, 1); } pcache1LeaveMutex(&pcache1.grp); } return nFree; |
︙ | ︙ | |||
59644 59645 59646 59647 59648 59649 59650 59651 59652 59653 59654 59655 59656 59657 | sqlite3MemJournalOpen(pPager->jfd); }else{ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; int nSpill; if( pPager->tempFile ){ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); nSpill = sqlite3Config.nStmtSpill; }else{ flags |= SQLITE_OPEN_MAIN_JOURNAL; nSpill = jrnlBufferSize(pPager); } /* Verify that the database still has the same name as it did when | > | 59707 59708 59709 59710 59711 59712 59713 59714 59715 59716 59717 59718 59719 59720 59721 | sqlite3MemJournalOpen(pPager->jfd); }else{ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; int nSpill; if( pPager->tempFile ){ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); flags |= SQLITE_OPEN_EXCLUSIVE; nSpill = sqlite3Config.nStmtSpill; }else{ flags |= SQLITE_OPEN_MAIN_JOURNAL; nSpill = jrnlBufferSize(pPager); } /* Verify that the database still has the same name as it did when |
︙ | ︙ | |||
66742 66743 66744 66745 66746 66747 66748 66749 66750 66751 66752 66753 66754 66755 | ** ** If pSchema is not NULL, then iDb is computed from pSchema and ** db using sqlite3SchemaToIndex(). */ SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ Btree *p; assert( db!=0 ); if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); assert( iDb>=0 && iDb<db->nDb ); if( !sqlite3_mutex_held(db->mutex) ) return 0; if( iDb==1 ) return 1; p = db->aDb[iDb].pBt; assert( p!=0 ); return p->sharable==0 || p->locked==1; | > | 66806 66807 66808 66809 66810 66811 66812 66813 66814 66815 66816 66817 66818 66819 66820 | ** ** If pSchema is not NULL, then iDb is computed from pSchema and ** db using sqlite3SchemaToIndex(). */ SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ Btree *p; assert( db!=0 ); if( db->pVfs==0 && db->nDb==0 ) return 1; if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); assert( iDb>=0 && iDb<db->nDb ); if( !sqlite3_mutex_held(db->mutex) ) return 0; if( iDb==1 ) return 1; p = db->aDb[iDb].pBt; assert( p!=0 ); return p->sharable==0 || p->locked==1; |
︙ | ︙ | |||
79422 79423 79424 79425 79426 79427 79428 79429 79430 79431 79432 79433 79434 79435 | */ SQLITE_PRIVATE int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return r1==0.0 || (memcmp(&r1, &r2, sizeof(r1))==0 && i >= -2251799813685248LL && i < 2251799813685248LL); } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert | > > > > > > > > > > | 79487 79488 79489 79490 79491 79492 79493 79494 79495 79496 79497 79498 79499 79500 79501 79502 79503 79504 79505 79506 79507 79508 79509 79510 | */ SQLITE_PRIVATE int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return r1==0.0 || (memcmp(&r1, &r2, sizeof(r1))==0 && i >= -2251799813685248LL && i < 2251799813685248LL); } /* Convert a floating point value to its closest integer. Do so in ** a way that avoids 'outside the range of representable values' warnings ** from UBSAN. */ SQLITE_PRIVATE i64 sqlite3RealToI64(double r){ if( r<=(double)SMALLEST_INT64 ) return SMALLEST_INT64; if( r>=(double)LARGEST_INT64) return LARGEST_INT64; return (i64)r; } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert |
︙ | ︙ | |||
79444 79445 79446 79447 79448 79449 79450 | if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ int rc; sqlite3_int64 ix; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) | | | 79519 79520 79521 79522 79523 79524 79525 79526 79527 79528 79529 79530 79531 79532 79533 | if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ int rc; sqlite3_int64 ix; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r))) ){ pMem->u.i = ix; MemSetTypeFlag(pMem, MEM_Int); }else{ MemSetTypeFlag(pMem, MEM_Real); } } |
︙ | ︙ | |||
81530 81531 81532 81533 81534 81535 81536 | assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); } assert( pOp>p->aOp ); pOp--; } resolve_p2_values_loop_exit: if( aLabel ){ | | | 81605 81606 81607 81608 81609 81610 81611 81612 81613 81614 81615 81616 81617 81618 81619 | assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); } assert( pOp>p->aOp ); pOp--; } resolve_p2_values_loop_exit: if( aLabel ){ sqlite3DbNNFreeNN(p->db, pParse->aLabel); pParse->aLabel = 0; } pParse->nLabel = 0; *pMaxFuncArgs = nMaxArgs; assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); } |
︙ | ︙ | |||
81841 81842 81843 81844 81845 81846 81847 81848 | /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ | > | | > | | | 81916 81917 81918 81919 81920 81921 81922 81923 81924 81925 81926 81927 81928 81929 81930 81931 81932 81933 81934 81935 81936 81937 81938 81939 81940 81941 81942 81943 81944 81945 81946 81947 81948 81949 81950 81951 81952 81953 81954 81955 81956 81957 81958 81959 | /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ assert( db!=0 ); if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbNNFreeNN(db, pDef); } } /* ** Delete a P4 value if necessary. */ static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); sqlite3DbNNFreeNN(db, p); } static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ assert( db!=0 ); freeEphemeralFunction(db, p->pFunc); sqlite3DbNNFreeNN(db, p); } static void freeP4(sqlite3 *db, int p4type, void *p4){ assert( db ); switch( p4type ){ case P4_FUNCCTX: { freeP4FuncCtx(db, (sqlite3_context*)p4); break; } case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_INTARRAY: { if( p4 ) sqlite3DbNNFreeNN(db, p4); break; } case P4_KEYINFO: { if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); break; } #ifdef SQLITE_ENABLE_CURSOR_HINTS |
︙ | ︙ | |||
81907 81908 81909 81910 81911 81912 81913 81914 81915 81916 81917 81918 81919 81920 81921 81922 81923 | /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ assert( nOp>=0 ); if( aOp ){ Op *pOp = &aOp[nOp-1]; while(1){ /* Exit via break */ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS sqlite3DbFree(db, pOp->zComment); #endif if( pOp==aOp ) break; pOp--; } | > | | 81984 81985 81986 81987 81988 81989 81990 81991 81992 81993 81994 81995 81996 81997 81998 81999 82000 82001 82002 82003 82004 82005 82006 82007 82008 82009 | /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ assert( nOp>=0 ); assert( db!=0 ); if( aOp ){ Op *pOp = &aOp[nOp-1]; while(1){ /* Exit via break */ if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS sqlite3DbFree(db, pOp->zComment); #endif if( pOp==aOp ) break; pOp--; } sqlite3DbNNFreeNN(db, aOp); } } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. |
︙ | ︙ | |||
82671 82672 82673 82674 82675 82676 82677 | testcase( p->flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); if( p->flags&(MEM_Agg|MEM_Dyn) ){ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); sqlite3VdbeMemRelease(p); p->flags = MEM_Undefined; }else if( p->szMalloc ){ | | | 82749 82750 82751 82752 82753 82754 82755 82756 82757 82758 82759 82760 82761 82762 82763 | testcase( p->flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); if( p->flags&(MEM_Agg|MEM_Dyn) ){ testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); sqlite3VdbeMemRelease(p); p->flags = MEM_Undefined; }else if( p->szMalloc ){ sqlite3DbNNFreeNN(db, p->zMalloc); p->szMalloc = 0; p->flags = MEM_Undefined; } #ifdef SQLITE_DEBUG else{ p->flags = MEM_Undefined; } |
︙ | ︙ | |||
84192 84193 84194 84195 84196 84197 84198 84199 84200 84201 | ** ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( p->db==0 || p->db==db ); if( p->aColName ){ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); | > | | | | | 84270 84271 84272 84273 84274 84275 84276 84277 84278 84279 84280 84281 84282 84283 84284 84285 84286 84287 84288 84289 84290 84291 84292 84293 84294 84295 84296 84297 84298 84299 84300 84301 | ** ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( db!=0 ); assert( p->db==0 || p->db==db ); if( p->aColName ){ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); sqlite3DbNNFreeNN(db, p->aColName); } for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } if( p->eVdbeState!=VDBE_INIT_STATE ){ releaseMemArray(p->aVar, p->nVar); if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); } vdbeFreeOpArray(db, p->aOp, p->nOp); if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3DbFree(db, p->zNormSql); { DblquoteStr *pThis, *pNext; for(pThis=p->pDblStr; pThis; pThis=pNext){ pNext = pThis->pNextStr; sqlite3DbFree(db, pThis); |
︙ | ︙ | |||
84238 84239 84240 84241 84242 84243 84244 84245 84246 84247 84248 84249 84250 84251 84252 84253 84254 84255 84256 84257 | ** Delete an entire VDBE. */ SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; assert( p!=0 ); db = p->db; assert( sqlite3_mutex_held(db->mutex) ); sqlite3VdbeClearObject(db, p); if( db->pnBytesFreed==0 ){ if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( db->pVdbe==p ); db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } } | > | | 84317 84318 84319 84320 84321 84322 84323 84324 84325 84326 84327 84328 84329 84330 84331 84332 84333 84334 84335 84336 84337 84338 84339 84340 84341 84342 84343 84344 84345 | ** Delete an entire VDBE. */ SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; assert( p!=0 ); db = p->db; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); sqlite3VdbeClearObject(db, p); if( db->pnBytesFreed==0 ){ if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( db->pVdbe==p ); db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } } sqlite3DbNNFreeNN(db, p); } /* ** The cursor "p" has a pending seek operation that has not yet been ** carried out. Seek the cursor now. If an error occurs, return ** the appropriate error code. */ |
︙ | ︙ | |||
85867 85868 85869 85870 85871 85872 85873 85874 85875 85876 85877 85878 85879 | ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord ** structure itself, using sqlite3DbFree(). ** ** This function is used to free UnpackedRecord structures allocated by ** the vdbeUnpackRecord() function found in vdbeapi.c. */ static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ if( p ){ int i; for(i=0; i<nField; i++){ Mem *pMem = &p->aMem[i]; if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); } | > | | 85947 85948 85949 85950 85951 85952 85953 85954 85955 85956 85957 85958 85959 85960 85961 85962 85963 85964 85965 85966 85967 85968 | ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord ** structure itself, using sqlite3DbFree(). ** ** This function is used to free UnpackedRecord structures allocated by ** the vdbeUnpackRecord() function found in vdbeapi.c. */ static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ assert( db!=0 ); if( p ){ int i; for(i=0; i<nField; i++){ Mem *pMem = &p->aMem[i]; if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); } sqlite3DbNNFreeNN(db, p); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, |
︙ | ︙ | |||
85944 85945 85946 85947 85948 85949 85950 | vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); if( preupdate.aNew ){ int i; for(i=0; i<pCsr->nField; i++){ sqlite3VdbeMemRelease(&preupdate.aNew[i]); } | | | 86025 86026 86027 86028 86029 86030 86031 86032 86033 86034 86035 86036 86037 86038 86039 | vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); if( preupdate.aNew ){ int i; for(i=0; i<pCsr->nField; i++){ sqlite3VdbeMemRelease(&preupdate.aNew[i]); } sqlite3DbNNFreeNN(db, preupdate.aNew); } } #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ /************** End of vdbeaux.c *********************************************/ /************** Begin file vdbeapi.c *****************************************/ /* |
︙ | ︙ | |||
87385 87386 87387 87388 87389 87390 87391 | ** ** A successful evaluation of this routine acquires the mutex on p. ** the mutex is released if any kind of error occurs. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ | | | < | 87466 87467 87468 87469 87470 87471 87472 87473 87474 87475 87476 87477 87478 87479 87480 87481 87482 87483 87484 87485 87486 87487 87488 87489 87490 87491 87492 87493 87494 87495 87496 87497 | ** ** A successful evaluation of this routine acquires the mutex on p. ** the mutex is released if any kind of error occurs. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ static int vdbeUnbind(Vdbe *p, unsigned int i){ Mem *pVar; if( vdbeSafetyNotNull(p) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(p->db->mutex); if( p->eVdbeState!=VDBE_READY_STATE ){ sqlite3Error(p->db, SQLITE_MISUSE); sqlite3_mutex_leave(p->db->mutex); sqlite3_log(SQLITE_MISUSE, "bind on a busy prepared statement: [%s]", p->zSql); return SQLITE_MISUSE_BKPT; } if( i>=(unsigned int)p->nVar ){ sqlite3Error(p->db, SQLITE_RANGE); sqlite3_mutex_leave(p->db->mutex); return SQLITE_RANGE; } pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; p->db->errCode = SQLITE_OK; /* If the bit corresponding to this variable in Vdbe.expmask is set, then ** binding a new value to this variable invalidates the current query plan. |
︙ | ︙ | |||
87440 87441 87442 87443 87444 87445 87446 | void (*xDel)(void*), /* Destructor for the data */ u8 encoding /* Encoding for the data */ ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; | | | 87520 87521 87522 87523 87524 87525 87526 87527 87528 87529 87530 87531 87532 87533 87534 | void (*xDel)(void*), /* Destructor for the data */ u8 encoding /* Encoding for the data */ ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ if( zData!=0 ){ pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); if( rc==SQLITE_OK && encoding!=0 ){ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); } |
︙ | ︙ | |||
87489 87490 87491 87492 87493 87494 87495 | ){ assert( xDel!=SQLITE_DYNAMIC ); return bindText(pStmt, i, zData, nData, xDel, 0); } SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; | | | | | | 87569 87570 87571 87572 87573 87574 87575 87576 87577 87578 87579 87580 87581 87582 87583 87584 87585 87586 87587 87588 87589 87590 87591 87592 87593 87594 87595 87596 87597 87598 87599 87600 87601 87602 87603 87604 87605 87606 87607 87608 87609 87610 87611 87612 87613 87614 87615 87616 87617 87618 87619 87620 87621 | ){ assert( xDel!=SQLITE_DYNAMIC ); return bindText(pStmt, i, zData, nData, xDel, 0); } SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ return sqlite3_bind_int64(p, i, (i64)iValue); } SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ int rc; Vdbe *p = (Vdbe*)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3_mutex_leave(p->db->mutex); } return rc; } SQLITE_API int sqlite3_bind_pointer( sqlite3_stmt *pStmt, int i, void *pPtr, const char *zPTtype, void (*xDestructor)(void*) ){ int rc; Vdbe *p = (Vdbe*)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor); sqlite3_mutex_leave(p->db->mutex); }else if( xDestructor ){ xDestructor(pPtr); } return rc; |
︙ | ︙ | |||
87605 87606 87607 87608 87609 87610 87611 | } } return rc; } SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; | | | 87685 87686 87687 87688 87689 87690 87691 87692 87693 87694 87695 87696 87697 87698 87699 | } } return rc; } SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, (u32)(i-1)); if( rc==SQLITE_OK ){ #ifndef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); #else rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); #endif sqlite3_mutex_leave(p->db->mutex); |
︙ | ︙ | |||
87790 87791 87792 87793 87794 87795 87796 87797 87798 87799 87800 87801 87802 87803 87804 87805 | } #endif if( op==SQLITE_STMTSTATUS_MEMUSED ){ sqlite3 *db = pVdbe->db; sqlite3_mutex_enter(db->mutex); v = 0; db->pnBytesFreed = (int*)&v; sqlite3VdbeDelete(pVdbe); db->pnBytesFreed = 0; sqlite3_mutex_leave(db->mutex); }else{ v = pVdbe->aCounter[op]; if( resetFlag ) pVdbe->aCounter[op] = 0; } return (int)v; } | > > > | 87870 87871 87872 87873 87874 87875 87876 87877 87878 87879 87880 87881 87882 87883 87884 87885 87886 87887 87888 | } #endif if( op==SQLITE_STMTSTATUS_MEMUSED ){ sqlite3 *db = pVdbe->db; sqlite3_mutex_enter(db->mutex); v = 0; db->pnBytesFreed = (int*)&v; assert( db->lookaside.pEnd==db->lookaside.pTrueEnd ); db->lookaside.pEnd = db->lookaside.pStart; sqlite3VdbeDelete(pVdbe); db->pnBytesFreed = 0; db->lookaside.pEnd = db->lookaside.pTrueEnd; sqlite3_mutex_leave(db->mutex); }else{ v = pVdbe->aCounter[op]; if( resetFlag ) pVdbe->aCounter[op] = 0; } return (int)v; } |
︙ | ︙ | |||
88631 88632 88633 88634 88635 88636 88637 | /* ** The string in pRec is known to look like an integer and to have a ** floating point value of rValue. Return true and set *piValue to the ** integer value if the string is in range to be an integer. Otherwise, ** return false. */ static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ | | > | 88714 88715 88716 88717 88718 88719 88720 88721 88722 88723 88724 88725 88726 88727 88728 88729 | /* ** The string in pRec is known to look like an integer and to have a ** floating point value of rValue. Return true and set *piValue to the ** integer value if the string is in range to be an integer. Otherwise, ** return false. */ static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ i64 iValue; iValue = sqlite3RealToI64(rValue); if( sqlite3RealSameAsInt(rValue,iValue) ){ *piValue = iValue; return 1; } return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); } |
︙ | ︙ | |||
88793 88794 88795 88796 88797 88798 88799 | ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ | > > | | | | | | < | 88877 88878 88879 88880 88881 88882 88883 88884 88885 88886 88887 88888 88889 88890 88891 88892 88893 88894 88895 88896 88897 88898 88899 88900 88901 88902 | ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ assert( (pMem->flags & MEM_Null)==0 || pMem->db==0 || pMem->db->mallocFailed ); if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); } assert( pMem->flags & (MEM_Str|MEM_Blob) ); testcase( pMem->flags & MEM_Str ); testcase( pMem->flags & MEM_Blob ); return computeNumericType(pMem); return 0; } #ifdef SQLITE_DEBUG /* ** Write a nice string representation of the contents of cell pMem ** into buffer zBuf, length nBuf. |
︙ | ︙ | |||
90048 90049 90050 90051 90052 90053 90054 | ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ | < | | < > | 90133 90134 90135 90136 90137 90138 90139 90140 90141 90142 90143 90144 90145 90146 90147 90148 90149 90150 90151 90152 90153 90154 90155 90156 90157 90158 90159 90160 | ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ u16 type1; /* Numeric type of left operand */ u16 type2; /* Numeric type of right operand */ i64 iA; /* Integer value of left operand */ i64 iB; /* Integer value of right operand */ double rA; /* Real value of left operand */ double rB; /* Real value of right operand */ pIn1 = &aMem[pOp->p1]; type1 = pIn1->flags; pIn2 = &aMem[pOp->p2]; type2 = pIn2->flags; pOut = &aMem[pOp->p3]; if( (type1 & type2 & MEM_Int)!=0 ){ int_math: iA = pIn1->u.i; iB = pIn2->u.i; switch( pOp->opcode ){ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; case OP_Divide: { |
︙ | ︙ | |||
90084 90085 90086 90087 90088 90089 90090 | if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); | | > > > | 90168 90169 90170 90171 90172 90173 90174 90175 90176 90177 90178 90179 90180 90181 90182 90183 90184 90185 90186 90187 | if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else if( ((type1 | type2) & MEM_Null)!=0 ){ goto arithmetic_result_is_null; }else{ type1 = numericType(pIn1); type2 = numericType(pIn2); if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; fp_math: rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; case OP_Subtract: rB -= rA; break; case OP_Multiply: rB *= rA; break; |
︙ | ︙ | |||
93070 93071 93072 93073 93074 93075 93076 | ** is earlier in the btree than the target row, then fall through ** into the subsquence OP_SeekGE opcode. ** ** <li> If the cursor is successfully moved to the target row by 0 or more ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. ** | | | 93157 93158 93159 93160 93161 93162 93163 93164 93165 93166 93167 93168 93169 93170 93171 | ** is earlier in the btree than the target row, then fall through ** into the subsquence OP_SeekGE opcode. ** ** <li> If the cursor is successfully moved to the target row by 0 or more ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. ** ** <li> If the cursor ends up past the target row (indicating that the target ** row does not exist in the btree) then jump to SeekOP.P2. ** </ol> */ case OP_SeekScan: { VdbeCursor *pC; int res; int nStep; |
︙ | ︙ | |||
95531 95532 95533 95534 95535 95536 95537 | break; } /* Opcode: OffsetLimit P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) ** ** This opcode performs a commonly used computation associated with | | | 95618 95619 95620 95621 95622 95623 95624 95625 95626 95627 95628 95629 95630 95631 95632 | break; } /* Opcode: OffsetLimit P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) ** ** This opcode performs a commonly used computation associated with ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] ** holds the offset counter. The opcode computes the combined value ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] ** value computed is the total number of rows that will need to be ** visited in order to complete the query. ** ** If r[P3] is zero or negative, that means there is no OFFSET ** and r[P2] is set to be the value of the LIMIT, r[P1]. |
︙ | ︙ | |||
101128 101129 101130 101131 101132 101133 101134 101135 101136 101137 101138 101139 101140 101141 | sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ const char *zName, /* Name of the journal file */ sqlite3_file *pJfd, /* Preallocated, blank file handle */ int flags, /* Opening flags */ int nSpill /* Bytes buffered before opening the file */ ){ MemJournal *p = (MemJournal*)pJfd; /* Zero the file-handle object. If nSpill was passed zero, initialize ** it using the sqlite3OsOpen() function of the underlying VFS. In this ** case none of the code in this module is executed as a result of calls ** made on the journal file-handle. */ memset(p, 0, sizeof(MemJournal)); if( nSpill==0 ){ | > > | 101215 101216 101217 101218 101219 101220 101221 101222 101223 101224 101225 101226 101227 101228 101229 101230 | sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ const char *zName, /* Name of the journal file */ sqlite3_file *pJfd, /* Preallocated, blank file handle */ int flags, /* Opening flags */ int nSpill /* Bytes buffered before opening the file */ ){ MemJournal *p = (MemJournal*)pJfd; assert( zName || nSpill<0 || (flags & SQLITE_OPEN_EXCLUSIVE) ); /* Zero the file-handle object. If nSpill was passed zero, initialize ** it using the sqlite3OsOpen() function of the underlying VFS. In this ** case none of the code in this module is executed as a result of calls ** made on the journal file-handle. */ memset(p, 0, sizeof(MemJournal)); if( nSpill==0 ){ |
︙ | ︙ | |||
104829 104830 104831 104832 104833 104834 104835 104836 104837 104838 104839 104840 104841 104842 | } /* ** Recursively delete an expression tree. */ static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ assert( p!=0 ); assert( !ExprUseUValue(p) || p->u.iValue>=0 ); assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); #ifdef SQLITE_DEBUG if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ assert( p->pLeft==0 ); | > | 104918 104919 104920 104921 104922 104923 104924 104925 104926 104927 104928 104929 104930 104931 104932 | } /* ** Recursively delete an expression tree. */ static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ assert( p!=0 ); assert( db!=0 ); assert( !ExprUseUValue(p) || p->u.iValue>=0 ); assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); #ifdef SQLITE_DEBUG if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ assert( p->pLeft==0 ); |
︙ | ︙ | |||
104861 104862 104863 104864 104865 104866 104867 | if( ExprHasProperty(p, EP_WinFunc) ){ sqlite3WindowDelete(db, p->y.pWin); } #endif } } if( !ExprHasProperty(p, EP_Static) ){ | | | 104951 104952 104953 104954 104955 104956 104957 104958 104959 104960 104961 104962 104963 104964 104965 | if( ExprHasProperty(p, EP_WinFunc) ){ sqlite3WindowDelete(db, p->y.pWin); } #endif } } if( !ExprHasProperty(p, EP_Static) ){ sqlite3DbNNFreeNN(db, p); } } SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){ if( p ) sqlite3ExprDeleteNN(db, p); } /* |
︙ | ︙ | |||
105647 105648 105649 105650 105651 105652 105653 105654 105655 | /* ** Delete an entire expression list. */ static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ int i = pList->nExpr; struct ExprList_item *pItem = pList->a; assert( pList->nExpr>0 ); do{ sqlite3ExprDelete(db, pItem->pExpr); | > | | | 105737 105738 105739 105740 105741 105742 105743 105744 105745 105746 105747 105748 105749 105750 105751 105752 105753 105754 105755 105756 105757 | /* ** Delete an entire expression list. */ static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ int i = pList->nExpr; struct ExprList_item *pItem = pList->a; assert( pList->nExpr>0 ); assert( db!=0 ); do{ sqlite3ExprDelete(db, pItem->pExpr); if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); pItem++; }while( --i>0 ); sqlite3DbNNFreeNN(db, pList); } SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ if( pList ) exprListDeleteNN(db, pList); } /* ** Return the bitwise-OR of all Expr.flags fields in the given |
︙ | ︙ | |||
109684 109685 109686 109687 109688 109689 109690 109691 109692 109693 109694 109695 109696 109697 109698 109699 109700 109701 109702 109703 109704 109705 109706 | ** ** As currently used, pExpr is always an aggregate function call. That ** fact is exploited for efficiency. */ SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ Walker w; struct RefSrcList x; memset(&w, 0, sizeof(w)); memset(&x, 0, sizeof(x)); w.xExprCallback = exprRefToSrcList; w.xSelectCallback = selectRefEnter; w.xSelectCallback2 = selectRefLeave; w.u.pRefSrcList = &x; x.db = pParse->db; x.pRef = pSrcList; assert( pExpr->op==TK_AGG_FUNCTION ); assert( ExprUseXList(pExpr) ); sqlite3WalkExprList(&w, pExpr->x.pList); #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); } #endif | > | | 109775 109776 109777 109778 109779 109780 109781 109782 109783 109784 109785 109786 109787 109788 109789 109790 109791 109792 109793 109794 109795 109796 109797 109798 109799 109800 109801 109802 109803 109804 109805 109806 | ** ** As currently used, pExpr is always an aggregate function call. That ** fact is exploited for efficiency. */ SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ Walker w; struct RefSrcList x; assert( pParse->db!=0 ); memset(&w, 0, sizeof(w)); memset(&x, 0, sizeof(x)); w.xExprCallback = exprRefToSrcList; w.xSelectCallback = selectRefEnter; w.xSelectCallback2 = selectRefLeave; w.u.pRefSrcList = &x; x.db = pParse->db; x.pRef = pSrcList; assert( pExpr->op==TK_AGG_FUNCTION ); assert( ExprUseXList(pExpr) ); sqlite3WalkExprList(&w, pExpr->x.pList); #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); } #endif if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); if( w.eCode & 0x01 ){ return 1; }else if( w.eCode ){ return 0; }else{ return -1; } |
︙ | ︙ | |||
115940 115941 115942 115943 115944 115945 115946 115947 115948 115949 115950 115951 | ** Delete memory allocated for the column names of a table or view (the ** Table.aCol[] array). */ SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; i<pTable->nCol; i++, pCol++){ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); sqlite3DbFree(db, pCol->zCnName); } | > | | | 116032 116033 116034 116035 116036 116037 116038 116039 116040 116041 116042 116043 116044 116045 116046 116047 116048 116049 116050 116051 116052 116053 116054 116055 116056 | ** Delete memory allocated for the column names of a table or view (the ** Table.aCol[] array). */ SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); assert( db!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; i<pTable->nCol; i++, pCol++){ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); sqlite3DbFree(db, pCol->zCnName); } sqlite3DbNNFreeNN(db, pTable->aCol); if( IsOrdinaryTable(pTable) ){ sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); } if( db->pnBytesFreed==0 ){ pTable->aCol = 0; pTable->nCol = 0; if( IsOrdinaryTable(pTable) ){ pTable->u.tab.pDfltList = 0; } } } |
︙ | ︙ | |||
115986 115987 115988 115989 115990 115991 115992 | ** prior to doing any free() operations. Since schema Tables do not use ** lookaside, this number should not change. ** ** If malloc has already failed, it may be that it failed while allocating ** a Table object that was going to be marked ephemeral. So do not check ** that no lookaside memory is used in this case either. */ int nLookaside = 0; | > | | | 116079 116080 116081 116082 116083 116084 116085 116086 116087 116088 116089 116090 116091 116092 116093 116094 116095 116096 116097 116098 116099 116100 116101 116102 116103 116104 | ** prior to doing any free() operations. Since schema Tables do not use ** lookaside, this number should not change. ** ** If malloc has already failed, it may be that it failed while allocating ** a Table object that was going to be marked ephemeral. So do not check ** that no lookaside memory is used in this case either. */ int nLookaside = 0; assert( db!=0 ); if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ nLookaside = sqlite3LookasideUsed(db, 0); } #endif /* Delete all indices associated with this table. */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, 0 ); assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); assert( pOld==pIndex || pOld==0 ); } |
︙ | ︙ | |||
116033 116034 116035 116036 116037 116038 116039 116040 | sqlite3DbFree(db, pTable); /* Verify that no lookaside memory was used by schema tables */ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); } SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ /* Do not delete the table until the reference count reaches zero. */ if( !pTable ) return; | > | | 116127 116128 116129 116130 116131 116132 116133 116134 116135 116136 116137 116138 116139 116140 116141 116142 116143 | sqlite3DbFree(db, pTable); /* Verify that no lookaside memory was used by schema tables */ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); } SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ /* Do not delete the table until the reference count reaches zero. */ assert( db!=0 ); if( !pTable ) return; if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return; deleteTable(db, pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. |
︙ | ︙ | |||
119201 119202 119203 119204 119205 119206 119207 | if( zName==0 ) goto exit_create_index; assert( pName->z!=0 ); if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ goto exit_create_index; } if( !IN_RENAME_OBJECT ){ if( !db->init.busy ){ | | | 119296 119297 119298 119299 119300 119301 119302 119303 119304 119305 119306 119307 119308 119309 119310 | if( zName==0 ) goto exit_create_index; assert( pName->z!=0 ); if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ goto exit_create_index; } if( !IN_RENAME_OBJECT ){ if( !db->init.busy ){ if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); |
︙ | ︙ | |||
119854 119855 119856 119857 119858 119859 119860 119861 119862 119863 119864 119865 | } /* ** Delete an IdList. */ SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ int i; if( pList==0 ) return; assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */ for(i=0; i<pList->nId; i++){ sqlite3DbFree(db, pList->a[i].zName); } | > | | 119949 119950 119951 119952 119953 119954 119955 119956 119957 119958 119959 119960 119961 119962 119963 119964 119965 119966 119967 119968 119969 | } /* ** Delete an IdList. */ SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ int i; assert( db!=0 ); if( pList==0 ) return; assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */ for(i=0; i<pList->nId; i++){ sqlite3DbFree(db, pList->a[i].zName); } sqlite3DbNNFreeNN(db, pList); } /* ** Return the index in pList of the identifier named zId. Return -1 ** if not found. */ SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){ |
︙ | ︙ | |||
120062 120063 120064 120065 120066 120067 120068 120069 120070 | /* ** Delete an entire SrcList including all its substructure. */ SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ int i; SrcItem *pItem; if( pList==0 ) return; for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ | > | | | | | 120158 120159 120160 120161 120162 120163 120164 120165 120166 120167 120168 120169 120170 120171 120172 120173 120174 120175 120176 120177 120178 120179 120180 120181 120182 120183 120184 120185 120186 120187 120188 | /* ** Delete an entire SrcList including all its substructure. */ SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ int i; SrcItem *pItem; assert( db!=0 ); if( pList==0 ) return; for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase); if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName); if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias); if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); sqlite3DeleteTable(db, pItem->pTab); if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); if( pItem->fg.isUsing ){ sqlite3IdListDelete(db, pItem->u3.pUsing); }else if( pItem->u3.pOn ){ sqlite3ExprDelete(db, pItem->u3.pOn); } } sqlite3DbNNFreeNN(db, pList); } /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase |
︙ | ︙ | |||
121329 121330 121331 121332 121333 121334 121335 121336 121337 121338 121339 121340 121341 | ** The Schema.cache_size variable is not cleared. */ SQLITE_PRIVATE void sqlite3SchemaClear(void *p){ Hash temp1; Hash temp2; HashElem *pElem; Schema *pSchema = (Schema *)p; temp1 = pSchema->tblHash; temp2 = pSchema->trigHash; sqlite3HashInit(&pSchema->trigHash); sqlite3HashClear(&pSchema->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ | > > | | | 121426 121427 121428 121429 121430 121431 121432 121433 121434 121435 121436 121437 121438 121439 121440 121441 121442 121443 121444 121445 121446 121447 121448 121449 121450 121451 121452 121453 121454 | ** The Schema.cache_size variable is not cleared. */ SQLITE_PRIVATE void sqlite3SchemaClear(void *p){ Hash temp1; Hash temp2; HashElem *pElem; Schema *pSchema = (Schema *)p; sqlite3 xdb; memset(&xdb, 0, sizeof(xdb)); temp1 = pSchema->tblHash; temp2 = pSchema->trigHash; sqlite3HashInit(&pSchema->trigHash); sqlite3HashClear(&pSchema->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger(&xdb, (Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pSchema->tblHash); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(&xdb, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; if( pSchema->schemaFlags & DB_SchemaLoaded ){ pSchema->iGeneration++; } |
︙ | ︙ | |||
121440 121441 121442 121443 121444 121445 121446 | /* Return true if table pTab is read-only. ** ** A table is read-only if any of the following are true: ** ** 1) It is a virtual table and no implementation of the xUpdate method ** has been provided ** | > > > > | | > > > > > > > > > > > > > > > > > > > > | | > | > | | 121539 121540 121541 121542 121543 121544 121545 121546 121547 121548 121549 121550 121551 121552 121553 121554 121555 121556 121557 121558 121559 121560 121561 121562 121563 121564 121565 121566 121567 121568 121569 121570 121571 121572 121573 121574 121575 121576 121577 121578 121579 121580 121581 121582 121583 121584 121585 121586 121587 121588 121589 121590 121591 121592 121593 121594 121595 121596 121597 121598 121599 121600 121601 121602 121603 121604 | /* Return true if table pTab is read-only. ** ** A table is read-only if any of the following are true: ** ** 1) It is a virtual table and no implementation of the xUpdate method ** has been provided ** ** 2) A trigger is currently being coded and the table is a virtual table ** that is SQLITE_VTAB_DIRECTONLY or if PRAGMA trusted_schema=OFF and ** the table is not SQLITE_VTAB_INNOCUOUS. ** ** 3) It is a system table (i.e. sqlite_schema), this call is not ** part of a nested parse and writable_schema pragma has not ** been specified ** ** 4) The table is a shadow table, the database connection is in ** defensive mode, and the current sqlite3_prepare() ** is for a top-level SQL statement. */ static int vtabIsReadOnly(Parse *pParse, Table *pTab){ if( sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 ){ return 1; } /* Within triggers: ** * Do not allow DELETE, INSERT, or UPDATE of SQLITE_VTAB_DIRECTONLY ** virtual tables ** * Only allow DELETE, INSERT, or UPDATE of non-SQLITE_VTAB_INNOCUOUS ** virtual tables if PRAGMA trusted_schema=ON. */ if( pParse->pToplevel!=0 && pTab->u.vtab.p->eVtabRisk > ((pParse->db->flags & SQLITE_TrustedSchema)!=0) ){ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", pTab->zName); } return 0; } static int tabIsReadOnly(Parse *pParse, Table *pTab){ sqlite3 *db; if( IsVirtual(pTab) ){ return vtabIsReadOnly(pParse, pTab); } if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0; db = pParse->db; if( (pTab->tabFlags & TF_Readonly)!=0 ){ return sqlite3WritableSchema(db)==0 && pParse->nested==0; } assert( pTab->tabFlags & TF_Shadow ); return sqlite3ReadOnlyShadowTables(db); } /* ** Check to make sure the given table is writable. ** ** If pTab is not writable -> generate an error message and return 1. ** If pTab is writable but other errors have occurred -> return 1. ** If pTab is writable and no prior errors -> return 0; */ SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ if( tabIsReadOnly(pParse, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); return 1; } #ifndef SQLITE_OMIT_VIEW |
︙ | ︙ | |||
122029 122030 122031 122032 122033 122034 122035 | sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) sqlite3ExprListDelete(db, pOrderBy); sqlite3ExprDelete(db, pLimit); #endif | | | 122154 122155 122156 122157 122158 122159 122160 122161 122162 122163 122164 122165 122166 122167 122168 | sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) sqlite3ExprListDelete(db, pOrderBy); sqlite3ExprDelete(db, pLimit); #endif if( aToOpen ) sqlite3DbNNFreeNN(db, aToOpen); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView |
︙ | ︙ | |||
126197 126198 126199 126200 126201 126202 126203 126204 126205 126206 126207 | ** hash table. */ SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ assert( IsOrdinaryTable(pTab) ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); /* Remove the FK from the fkeyHash hash table. */ | > | | 126322 126323 126324 126325 126326 126327 126328 126329 126330 126331 126332 126333 126334 126335 126336 126337 126338 126339 126340 126341 | ** hash table. */ SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){ FKey *pFKey; /* Iterator variable */ FKey *pNext; /* Copy of pFKey->pNextFrom */ assert( IsOrdinaryTable(pTab) ); assert( db!=0 ); for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); /* Remove the FK from the fkeyHash hash table. */ if( db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ void *p = (void *)pFKey->pNextTo; const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); } |
︙ | ︙ | |||
127652 127653 127654 127655 127656 127657 127658 | insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3UpsertDelete(db, pUpsert); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); | | | 127778 127779 127780 127781 127782 127783 127784 127785 127786 127787 127788 127789 127790 127791 127792 | insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3UpsertDelete(db, pUpsert); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView |
︙ | ︙ | |||
133535 133536 133537 133538 133539 133540 133541 | sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx, *pPk; | | > > > > > | > > > > > > > > > > > > > > > > > > > > > | 133661 133662 133663 133664 133665 133666 133667 133668 133669 133670 133671 133672 133673 133674 133675 133676 133677 133678 133679 133680 133681 133682 133683 133684 133685 133686 133687 133688 133689 133690 133691 133692 133693 133694 133695 133696 133697 133698 133699 133700 133701 133702 133703 133704 133705 133706 133707 133708 133709 133710 133711 133712 133713 133714 133715 133716 133717 133718 133719 133720 133721 133722 133723 133724 133725 133726 133727 | sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx, *pPk; Index *pPrior = 0; /* Previous index */ int loopTop; int iDataCur, iIdxCur; int r1 = -1; int bStrict; int r2; /* Previous key for WITHOUT ROWID tables */ if( !IsOrdinaryTable(pTab) ) continue; if( pObjTab && pObjTab!=pTab ) continue; if( isQuick || HasRowid(pTab) ){ pPk = 0; r2 = 0; }else{ pPk = sqlite3PrimaryKeyIndex(pTab); r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol); sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1, 0, &iDataCur, &iIdxCur); /* reg[7] counts the number of entries in the table. ** reg[8+i] counts the number of entries in the i-th index */ sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } assert( pParse->nMem>=8+j ); assert( sqlite3NoTempsInRange(pParse,1,7+j) ); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); if( !isQuick ){ /* Sanity check on record header decoding */ sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3); sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); VdbeComment((v, "(right-most column)")); if( pPk ){ /* Verify WITHOUT ROWID keys are in ascending order */ int a1; char *zErr; a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v); zErr = sqlite3MPrintf(db, "row not in PRIMARY KEY order for %s", pTab->zName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, a1); sqlite3VdbeJumpHere(v, a1+1); for(j=0; j<pPk->nKeyCol; j++){ sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j); } } } /* Verify that all NOT NULL columns really are NOT NULL. At the ** same time verify the type of the content of STRICT tables */ bStrict = (pTab->tabFlags & TF_Strict)!=0; for(j=0; j<pTab->nCol; j++){ char *zErr; Column *pCol = pTab->aCol + j; |
︙ | ︙ | |||
133589 133590 133591 133592 133593 133594 133595 | if( bStrict && pCol->eCType!=COLTYPE_ANY ){ sqlite3VdbeGoto(v, doError); }else{ integrityCheckResultRow(v); } sqlite3VdbeJumpHere(v, jmp2); } | < | < | 133741 133742 133743 133744 133745 133746 133747 133748 133749 133750 133751 133752 133753 133754 133755 | if( bStrict && pCol->eCType!=COLTYPE_ANY ){ sqlite3VdbeGoto(v, doError); }else{ integrityCheckResultRow(v); } sqlite3VdbeJumpHere(v, jmp2); } if( bStrict && pCol->eCType!=COLTYPE_ANY ){ jmp2 = sqlite3VdbeAddOp3(v, OP_IsNullOrType, 3, 0, sqlite3StdTypeMap[pCol->eCType-1]); VdbeCoverage(v); zErr = sqlite3MPrintf(db, "non-%s value in %s.%s", sqlite3StdType[pCol->eCType-1], pTab->zName, pTab->aCol[j].zCnName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); |
︙ | ︙ | |||
133690 133691 133692 133693 133694 133695 133696 133697 133698 133699 133700 133701 133702 133703 | addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); sqlite3VdbeLoadString(v, 4, pIdx->zName); sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, addr); } } } } { static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ | > > > | 133840 133841 133842 133843 133844 133845 133846 133847 133848 133849 133850 133851 133852 133853 133854 133855 133856 | addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); sqlite3VdbeLoadString(v, 4, pIdx->zName); sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); integrityCheckResultRow(v); sqlite3VdbeJumpHere(v, addr); } if( pPk ){ sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol); } } } } { static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ |
︙ | ︙ | |||
135088 135089 135090 135091 135092 135093 135094 | */ SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse *pParse){ sqlite3 *db = pParse->db; assert( db!=0 ); assert( db->pParse==pParse ); assert( pParse->nested==0 ); #ifndef SQLITE_OMIT_SHARED_CACHE | | | | | 135241 135242 135243 135244 135245 135246 135247 135248 135249 135250 135251 135252 135253 135254 135255 135256 135257 135258 135259 135260 135261 135262 135263 | */ SQLITE_PRIVATE void sqlite3ParseObjectReset(Parse *pParse){ sqlite3 *db = pParse->db; assert( db!=0 ); assert( db->pParse==pParse ); assert( pParse->nested==0 ); #ifndef SQLITE_OMIT_SHARED_CACHE if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock); #endif while( pParse->pCleanup ){ ParseCleanup *pCleanup = pParse->pCleanup; pParse->pCleanup = pCleanup->pNext; pCleanup->xCleanup(db, pCleanup->pPtr); sqlite3DbNNFreeNN(db, pCleanup); } if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel); if( pParse->pConstExpr ){ sqlite3ExprListDelete(db, pParse->pConstExpr); } assert( db->lookaside.bDisable >= pParse->disableLookaside ); db->lookaside.bDisable -= pParse->disableLookaside; db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; assert( pParse->db->pParse==pParse ); |
︙ | ︙ | |||
135655 135656 135657 135658 135659 135660 135661 135662 135663 135664 135665 135666 135667 135668 135669 135670 135671 135672 135673 135674 135675 135676 135677 135678 135679 135680 | ** Delete all the content of a Select structure. Deallocate the structure ** itself depending on the value of bFree ** ** If bFree==1, call sqlite3DbFree() on the p object. ** If bFree==0, Leave the first Select object unfreed */ static void clearSelect(sqlite3 *db, Select *p, int bFree){ while( p ){ Select *pPrior = p->pPrior; sqlite3ExprListDelete(db, p->pEList); sqlite3SrcListDelete(db, p->pSrc); sqlite3ExprDelete(db, p->pWhere); sqlite3ExprListDelete(db, p->pGroupBy); sqlite3ExprDelete(db, p->pHaving); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pLimit); if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ sqlite3WindowListDelete(db, p->pWinDefn); } while( p->pWin ){ assert( p->pWin->ppThis==&p->pWin ); sqlite3WindowUnlinkFromSelect(p->pWin); } #endif | > | | 135808 135809 135810 135811 135812 135813 135814 135815 135816 135817 135818 135819 135820 135821 135822 135823 135824 135825 135826 135827 135828 135829 135830 135831 135832 135833 135834 135835 135836 135837 135838 135839 135840 135841 135842 | ** Delete all the content of a Select structure. Deallocate the structure ** itself depending on the value of bFree ** ** If bFree==1, call sqlite3DbFree() on the p object. ** If bFree==0, Leave the first Select object unfreed */ static void clearSelect(sqlite3 *db, Select *p, int bFree){ assert( db!=0 ); while( p ){ Select *pPrior = p->pPrior; sqlite3ExprListDelete(db, p->pEList); sqlite3SrcListDelete(db, p->pSrc); sqlite3ExprDelete(db, p->pWhere); sqlite3ExprListDelete(db, p->pGroupBy); sqlite3ExprDelete(db, p->pHaving); sqlite3ExprListDelete(db, p->pOrderBy); sqlite3ExprDelete(db, p->pLimit); if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); #ifndef SQLITE_OMIT_WINDOWFUNC if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ sqlite3WindowListDelete(db, p->pWinDefn); } while( p->pWin ){ assert( p->pWin->ppThis==&p->pWin ); sqlite3WindowUnlinkFromSelect(p->pWin); } #endif if( bFree ) sqlite3DbNNFreeNN(db, p); p = pPrior; bFree = 1; } } /* ** Initialize a SelectDest structure. |
︙ | ︙ | |||
137080 137081 137082 137083 137084 137085 137086 137087 137088 | } /* ** Deallocate a KeyInfo object */ SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){ if( p ){ assert( p->nRef>0 ); p->nRef--; | > | | 137234 137235 137236 137237 137238 137239 137240 137241 137242 137243 137244 137245 137246 137247 137248 137249 137250 137251 | } /* ** Deallocate a KeyInfo object */ SQLITE_PRIVATE void sqlite3KeyInfoUnref(KeyInfo *p){ if( p ){ assert( p->db!=0 ); assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); } } /* ** Make a new pointer to a KeyInfo object */ SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ |
︙ | ︙ | |||
137267 137268 137269 137270 137271 137272 137273 | addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nColumn+nRefKey); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); | | > > > | 137422 137423 137424 137425 137426 137427 137428 137429 137430 137431 137432 137433 137434 137435 137436 137437 137438 137439 137440 137441 137442 137443 137444 137445 137446 | addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nColumn+nRefKey); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); assert( p->iLimit==0 && p->iOffset==0 ); sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); bSeq = 0; }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); iSortTab = iTab; bSeq = 1; if( p->iOffset>0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); } } for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( aOutEx[i].fg.bSorterRef ) continue; #endif if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; } |
︙ | ︙ | |||
147551 147552 147553 147554 147555 147556 147557 | ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){ assert( IsVirtual(p) ); | > | | 147709 147710 147711 147712 147713 147714 147715 147716 147717 147718 147719 147720 147721 147722 147723 147724 | ** connection db is decremented immediately (which may lead to the ** structure being xDisconnected and free). Any other VTable structures ** in the list are moved to the sqlite3.pDisconnect list of the associated ** database connection. */ SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){ assert( IsVirtual(p) ); assert( db!=0 ); if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); if( p->u.vtab.azArg ){ int i; for(i=0; i<p->u.vtab.nArg; i++){ if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]); } sqlite3DbFree(db, p->u.vtab.azArg); } |
︙ | ︙ | |||
149836 149837 149838 149839 149840 149841 149842 | if( !db->mallocFailed ){ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); pExpr->iTable = iTab; } sqlite3ExprDelete(db, pX); }else{ | > | | 149995 149996 149997 149998 149999 150000 150001 150002 150003 150004 150005 150006 150007 150008 150009 150010 | if( !db->mallocFailed ){ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); pExpr->iTable = iTab; } sqlite3ExprDelete(db, pX); }else{ int n = sqlite3ExprVectorSize(pX->pLeft); aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n)); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); } pX = pExpr; } if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); |
︙ | ︙ | |||
151322 151323 151324 151325 151326 151327 151328 | }else if( bStopAtNull ){ if( regBignull==0 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; } nConstraint++; } | | | | 151482 151483 151484 151485 151486 151487 151488 151489 151490 151491 151492 151493 151494 151495 151496 151497 | }else if( bStopAtNull ){ if( regBignull==0 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; } nConstraint++; } if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff); if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff); /* Top of the loop body */ if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ if( regBignull ){ |
︙ | ︙ | |||
155554 155555 155556 155557 155558 155559 155560 | aStat[1] = aSample[i].anEq[iCol]; }else{ /* At this point, the (iCol+1) field prefix of aSample[i] is the first ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec ** is larger than all samples in the array. */ tRowcnt iUpper, iGap; if( i>=pIdx->nSample ){ | | | 155714 155715 155716 155717 155718 155719 155720 155721 155722 155723 155724 155725 155726 155727 155728 | aStat[1] = aSample[i].anEq[iCol]; }else{ /* At this point, the (iCol+1) field prefix of aSample[i] is the first ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec ** is larger than all samples in the array. */ tRowcnt iUpper, iGap; if( i>=pIdx->nSample ){ iUpper = pIdx->nRowEst0; }else{ iUpper = aSample[i].anLt[iCol]; } if( iLower>=iUpper ){ iGap = 0; }else{ |
︙ | ︙ | |||
156238 156239 156240 156241 156242 156243 156244 156245 | return SQLITE_OK; } /* ** Delete a WhereLoop object */ static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ whereLoopClear(db, p); | > | > | | | 156398 156399 156400 156401 156402 156403 156404 156405 156406 156407 156408 156409 156410 156411 156412 156413 156414 156415 156416 156417 156418 156419 156420 156421 156422 156423 156424 156425 156426 156427 156428 156429 156430 156431 156432 156433 156434 156435 | return SQLITE_OK; } /* ** Delete a WhereLoop object */ static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ assert( db!=0 ); whereLoopClear(db, p); sqlite3DbNNFreeNN(db, p); } /* ** Free a WhereInfo structure */ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ assert( pWInfo!=0 ); assert( db!=0 ); sqlite3WhereClauseClear(&pWInfo->sWC); while( pWInfo->pLoops ){ WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } assert( pWInfo->pExprMods==0 ); while( pWInfo->pMemToFree ){ WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); pWInfo->pMemToFree = pNext; } sqlite3DbNNFreeNN(db, pWInfo); } /* Undo all Expr node modifications */ static void whereUndoExprMods(WhereInfo *pWInfo){ while( pWInfo->pExprMods ){ WhereExprMod *p = pWInfo->pExprMods; |
︙ | ︙ | |||
159060 159061 159062 159063 159064 159065 159066 | } } pWInfo->nRowOut = pFrom->nRow; /* Free temporary memory and return success */ | > | | 159222 159223 159224 159225 159226 159227 159228 159229 159230 159231 159232 159233 159234 159235 159236 159237 | } } pWInfo->nRowOut = pFrom->nRow; /* Free temporary memory and return success */ assert( db!=0 ); sqlite3DbNNFreeNN(db, pSpace); return SQLITE_OK; } /* ** Most queries use only a single table (they are not joins) and have ** simple == constraints against indexed fields. This routine attempts ** to plan those simple cases using much less ceremony than the |
︙ | ︙ | |||
170142 170143 170144 170145 170146 170147 170148 | ** will take responsibility for freeing the Table structure. */ sqlite3DeleteTable(db, pParse->pNewTable); } if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){ sqlite3DeleteTrigger(db, pParse->pNewTrigger); } | | | 170305 170306 170307 170308 170309 170310 170311 170312 170313 170314 170315 170316 170317 170318 170319 | ** will take responsibility for freeing the Table structure. */ sqlite3DeleteTable(db, pParse->pNewTable); } if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){ sqlite3DeleteTrigger(db, pParse->pNewTrigger); } if( pParse->pVList ) sqlite3DbNNFreeNN(db, pParse->pVList); db->pParse = pParentParse; assert( nErr==0 || pParse->rc!=SQLITE_OK ); return nErr; } #ifdef SQLITE_ENABLE_NORMALIZE |
︙ | ︙ | |||
171498 171499 171500 171501 171502 171503 171504 | #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ assert( ((uptr)p)<=szAlloc + (uptr)pStart ); db->lookaside.pEnd = p; db->lookaside.bDisable = 0; db->lookaside.bMalloced = pBuf==0 ?1:0; db->lookaside.nSlot = nBig+nSm; }else{ | | | | > | 171661 171662 171663 171664 171665 171666 171667 171668 171669 171670 171671 171672 171673 171674 171675 171676 171677 171678 171679 171680 171681 171682 171683 171684 171685 171686 171687 | #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ assert( ((uptr)p)<=szAlloc + (uptr)pStart ); db->lookaside.pEnd = p; db->lookaside.bDisable = 0; db->lookaside.bMalloced = pBuf==0 ?1:0; db->lookaside.nSlot = nBig+nSm; }else{ db->lookaside.pStart = 0; #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE db->lookaside.pSmallInit = 0; db->lookaside.pSmallFree = 0; db->lookaside.pMiddle = 0; #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ db->lookaside.pEnd = 0; db->lookaside.bDisable = 1; db->lookaside.sz = 0; db->lookaside.bMalloced = 0; db->lookaside.nSlot = 0; } db->lookaside.pTrueEnd = db->lookaside.pEnd; assert( sqlite3LookasideUsed(db,0)==0 ); #endif /* SQLITE_OMIT_LOOKASIDE */ return SQLITE_OK; } /* ** Return the mutex associated with a database connection. |
︙ | ︙ | |||
181192 181193 181194 181195 181196 181197 181198 | nDistance = nMaxUndeferred - iPrev; }else{ p1 = pPhrase->doclist.pList; p2 = aPoslist; nDistance = iPrev - nMaxUndeferred; } | | | 181356 181357 181358 181359 181360 181361 181362 181363 181364 181365 181366 181367 181368 181369 181370 | nDistance = nMaxUndeferred - iPrev; }else{ p1 = pPhrase->doclist.pList; p2 = aPoslist; nDistance = iPrev - nMaxUndeferred; } aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING); if( !aOut ){ sqlite3_free(aPoslist); return SQLITE_NOMEM; } pPhrase->doclist.pList = aOut; assert( p1 && p2 ); |
︙ | ︙ | |||
204218 204219 204220 204221 204222 204223 204224 | sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); }else{ sqlite3_bind_value(pUp, 2, aData[2]); } sqlite3_free(p); nChange = 1; } | | | 204382 204383 204384 204385 204386 204387 204388 204389 204390 204391 204392 204393 204394 204395 204396 | sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); }else{ sqlite3_bind_value(pUp, 2, aData[2]); } sqlite3_free(p); nChange = 1; } for(jj=1; jj<nData-2; jj++){ nChange++; sqlite3_bind_value(pUp, jj+2, aData[jj+2]); } if( nChange ){ sqlite3_step(pUp); rc = sqlite3_reset(pUp); } |
︙ | ︙ | |||
219306 219307 219308 219309 219310 219311 219312 | static void sqlite3Fts5BufferZero(Fts5Buffer*); static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*); static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...); static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...); #define fts5BufferZero(x) sqlite3Fts5BufferZero(x) | | | 219470 219471 219472 219473 219474 219475 219476 219477 219478 219479 219480 219481 219482 219483 219484 | static void sqlite3Fts5BufferZero(Fts5Buffer*); static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*); static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...); static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...); #define fts5BufferZero(x) sqlite3Fts5BufferZero(x) #define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,(i64)c) #define fts5BufferFree(a) sqlite3Fts5BufferFree(a) #define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d) #define fts5BufferSet(a,b,c,d) sqlite3Fts5BufferSet(a,b,c,d) #define fts5BufferGrow(pRc,pBuf,nn) ( \ (u32)((pBuf)->n) + (u32)(nn) <= (u32)((pBuf)->nSpace) ? 0 : \ sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \ |
︙ | ︙ | |||
231183 231184 231185 231186 231187 231188 231189 | } /* Write the rowid. */ if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid); }else{ assert_nc( p->rc || iRowid>pWriter->iPrevRowid ); | | > > | 231347 231348 231349 231350 231351 231352 231353 231354 231355 231356 231357 231358 231359 231360 231361 231362 231363 | } /* Write the rowid. */ if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid); }else{ assert_nc( p->rc || iRowid>pWriter->iPrevRowid ); fts5BufferAppendVarint(&p->rc, &pPage->buf, (u64)iRowid - (u64)pWriter->iPrevRowid ); } pWriter->iPrevRowid = iRowid; pWriter->bFirstRowidInDoclist = 0; pWriter->bFirstRowidInPage = 0; } } |
︙ | ︙ | |||
231947 231948 231949 231950 231951 231952 231953 | fts5StructureRelease(pStruct); } return fts5IndexReturn(p); } static void fts5AppendRowid( Fts5Index *p, | | | | 232113 232114 232115 232116 232117 232118 232119 232120 232121 232122 232123 232124 232125 232126 232127 232128 232129 232130 232131 232132 232133 232134 232135 232136 232137 | fts5StructureRelease(pStruct); } return fts5IndexReturn(p); } static void fts5AppendRowid( Fts5Index *p, u64 iDelta, Fts5Iter *pUnused, Fts5Buffer *pBuf ){ UNUSED_PARAM(pUnused); fts5BufferAppendVarint(&p->rc, pBuf, iDelta); } static void fts5AppendPoslist( Fts5Index *p, u64 iDelta, Fts5Iter *pMulti, Fts5Buffer *pBuf ){ int nData = pMulti->base.nData; int nByte = nData + 9 + 9 + FTS5_DATA_ZERO_PADDING; assert( nData>0 ); if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nByte) ){ |
︙ | ︙ | |||
232032 232033 232034 232035 232036 232037 232038 | ){ assert( pBuf->n!=0 || (*piLastRowid)==0 ); fts5BufferSafeAppendVarint(pBuf, iRowid - *piLastRowid); *piLastRowid = iRowid; } #endif | | | | | | 232198 232199 232200 232201 232202 232203 232204 232205 232206 232207 232208 232209 232210 232211 232212 232213 232214 232215 | ){ assert( pBuf->n!=0 || (*piLastRowid)==0 ); fts5BufferSafeAppendVarint(pBuf, iRowid - *piLastRowid); *piLastRowid = iRowid; } #endif #define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \ assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \ fts5BufferSafeAppendVarint((pBuf), (u64)(iRowid) - (u64)(iLastRowid)); \ (iLastRowid) = (iRowid); \ } /* ** Swap the contents of buffer *p1 with that of *p2. */ static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){ Fts5Buffer tmp = *p1; |
︙ | ︙ | |||
232306 232307 232308 232309 232310 232311 232312 | ){ Fts5Structure *pStruct; Fts5Buffer *aBuf; int nBuf = 32; int nMerge = 1; void (*xMerge)(Fts5Index*, Fts5Buffer*, int, Fts5Buffer*); | | | 232472 232473 232474 232475 232476 232477 232478 232479 232480 232481 232482 232483 232484 232485 232486 | ){ Fts5Structure *pStruct; Fts5Buffer *aBuf; int nBuf = 32; int nMerge = 1; void (*xMerge)(Fts5Index*, Fts5Buffer*, int, Fts5Buffer*); void (*xAppend)(Fts5Index*, u64, Fts5Iter*, Fts5Buffer*); if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){ xMerge = fts5MergeRowidLists; xAppend = fts5AppendRowid; }else{ nMerge = FTS5_MERGE_NLIST-1; nBuf = nMerge*8; /* Sufficient to merge (16^8)==(2^32) lists */ xMerge = fts5MergePrefixLists; |
︙ | ︙ | |||
232345 232346 232347 232348 232349 232350 232351 | for(; fts5MultiIterEof(p, p1)==0; fts5MultiIterNext2(p, p1, &dummy) ){ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ]; p1->xSetOutputs(p1, pSeg); if( p1->base.nData ){ | | | 232511 232512 232513 232514 232515 232516 232517 232518 232519 232520 232521 232522 232523 232524 232525 | for(; fts5MultiIterEof(p, p1)==0; fts5MultiIterNext2(p, p1, &dummy) ){ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ]; p1->xSetOutputs(p1, pSeg); if( p1->base.nData ){ xAppend(p, (u64)p1->base.iRowid-(u64)iLastRowid, p1, &doclist); iLastRowid = p1->base.iRowid; } } fts5MultiIterFree(p1); } pToken[0] = FTS5_MAIN_PREFIX + iIdx; |
︙ | ︙ | |||
232393 232394 232395 232396 232397 232398 232399 | fts5BufferZero(&aBuf[iStore]); } } } iLastRowid = 0; } | | | 232559 232560 232561 232562 232563 232564 232565 232566 232567 232568 232569 232570 232571 232572 232573 | fts5BufferZero(&aBuf[iStore]); } } } iLastRowid = 0; } xAppend(p, (u64)p1->base.iRowid-(u64)iLastRowid, p1, &doclist); iLastRowid = p1->base.iRowid; } assert( (nBuf%nMerge)==0 ); for(i=0; i<nBuf; i+=nMerge){ int iFree; if( p->rc==SQLITE_OK ){ |
︙ | ︙ | |||
236709 236710 236711 236712 236713 236714 236715 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); | | | 236875 236876 236877 236878 236879 236880 236881 236882 236883 236884 236885 236886 236887 236888 236889 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); sqlite3_result_text(pCtx, "fts5: 2022-06-25 17:20:36 bee9903df5c89823e4e285fa1a56f20c8b0408d55bd74dbf71ea61e993da6dc9", -1, SQLITE_TRANSIENT); } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts5ShadowName(const char *zName){ |
︙ | ︙ |