Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the built-in SQLite to the latest 3.43.0 beta. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA3-256: |
d4901505312d7d8c330b1f35e16d8587 |
User & Date: | drh 2023-08-18 19:43:51.273 |
Context
2023-10-24
| ||
13:35 | Update the built-in SQLite to the first 3.44.0 beta. (check-in: 830ad9a734 user: drh tags: trunk) | |
2023-08-18
| ||
19:43 | Update the built-in SQLite to the latest 3.43.0 beta. (check-in: d490150531 user: drh tags: trunk) | |
2023-05-05
| ||
14:43 | Update the built-in SQLite to the most recent 3.42.0 beta, for testing. (check-in: 9d3368116c user: drh tags: trunk) | |
Changes
Changes to tclsqlite3.c.
1 2 3 | #ifndef USE_SYSTEM_SQLITE /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite | | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #ifndef USE_SYSTEM_SQLITE /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.43.0. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other ** programs, you need this file and the "sqlite3.h" header file that defines ** the programming interface to the SQLite library. (If you do not have ** the "sqlite3.h" header file at hand, you will find a copy embedded within ** the text of this file. Search for "Begin file sqlite3.h" to find the start ** of the embedded sqlite3.h header file.) Additional code files may be needed ** if you want a wrapper to interface SQLite with your choice of programming ** language. The code for the "sqlite3" command-line shell is also in a ** separate file. This file contains only code for the core SQLite library. ** ** The content in this amalgamation comes from Fossil check-in ** 48f1be8cc505a7e2902c79e26c1d9a121ff. */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1 #ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif /************** Begin file sqliteInt.h ***************************************/ |
︙ | ︙ | |||
47 48 49 50 51 52 53 | ** coverage: ** ** NO_TEST - The branches on this line are not ** measured by branch coverage. This is ** used on lines of code that actually ** implement parts of coverage testing. ** | | | | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | ** coverage: ** ** NO_TEST - The branches on this line are not ** measured by branch coverage. This is ** used on lines of code that actually ** implement parts of coverage testing. ** ** OPTIMIZATION-IF-TRUE - This branch is allowed to always be false ** and the correct answer is still obtained, ** though perhaps more slowly. ** ** OPTIMIZATION-IF-FALSE - This branch is allowed to always be true ** and the correct answer is still obtained, ** though perhaps more slowly. ** ** PREVENTS-HARMLESS-OVERREAD - This branch prevents a buffer overread ** that would be harmless and undetectable ** if it did occur. ** |
︙ | ︙ | |||
453 454 455 456 457 458 459 | ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.43.0" #define SQLITE_VERSION_NUMBER 3043000 #define SQLITE_SOURCE_ID "2023-08-18 15:39:38 c48f1be8cc505a7e2902c79e26c1d9a121ff5c55785ac812d2e09232b2414695" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
835 836 837 838 839 840 841 842 843 844 845 846 847 848 | #define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8)) #define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8)) #define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8)) #define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8)) #define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) | > | 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | #define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8)) #define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8)) #define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8)) #define SQLITE_IOERR_DATA (SQLITE_IOERR | (32<<8)) #define SQLITE_IOERR_CORRUPTFS (SQLITE_IOERR | (33<<8)) #define SQLITE_IOERR_IN_PAGE (SQLITE_IOERR | (34<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_BUSY_TIMEOUT (SQLITE_BUSY | (3<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) |
︙ | ︙ | |||
1497 1498 1499 1500 1501 1502 1503 | ** mode database and there exists at least one client in another process that ** currently has an SQL transaction open on the database. It is set to 0 if ** the database is not a wal-mode db, or if there is no such connection in any ** other process. This opcode cannot be used to detect transactions opened ** by clients within the current process, only within other processes. ** ** <li>[[SQLITE_FCNTL_CKSM_FILE]] | | | 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 | ** mode database and there exists at least one client in another process that ** currently has an SQL transaction open on the database. It is set to 0 if ** the database is not a wal-mode db, or if there is no such connection in any ** other process. This opcode cannot be used to detect transactions opened ** by clients within the current process, only within other processes. ** ** <li>[[SQLITE_FCNTL_CKSM_FILE]] ** The [SQLITE_FCNTL_CKSM_FILE] opcode is for use internally by the ** [checksum VFS shim] only. ** ** <li>[[SQLITE_FCNTL_RESET_CACHE]] ** If there is currently no transaction open on the database, and the ** database is not a temp db, then the [SQLITE_FCNTL_RESET_CACHE] file-control ** purges the contents of the in-memory page cache. If there is an open ** transaction, or if the db is a temp-db, this opcode is a no-op, not an error. |
︙ | ︙ | |||
2761 2762 2763 2764 2765 2766 2767 | ** practical use, but is provided so that SQLite can continue to claim the ** ability to generate new database files that are compatible with version ** 3.0.0. ** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on, ** the [VACUUM] command will fail with an obscure error when attempting to ** process a table with generated columns and a descending index. This is ** not considered a bug since SQLite versions 3.3.0 and earlier do not support | | | 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 | ** practical use, but is provided so that SQLite can continue to claim the ** ability to generate new database files that are compatible with version ** 3.0.0. ** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on, ** the [VACUUM] command will fail with an obscure error when attempting to ** process a table with generated columns and a descending index. This is ** not considered a bug since SQLite versions 3.3.0 and earlier do not support ** either generated columns or descending indexes. ** </dd> ** ** [[SQLITE_DBCONFIG_STMT_SCANSTATUS]] ** <dt>SQLITE_DBCONFIG_STMT_SCANSTATUS</dt> ** <dd>The SQLITE_DBCONFIG_STMT_SCANSTATUS option is only useful in ** SQLITE_ENABLE_STMT_SCANSTATUS builds. In this case, it sets or clears ** a flag that enables collection of the sqlite3_stmt_scanstatus_v2() |
︙ | ︙ | |||
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 | ** not effected by the sqlite3_interrupt(). ** ^A call to sqlite3_interrupt(D) that occurs when there are no running ** SQL statements is a no-op and has no effect on SQL statements ** that are started after the sqlite3_interrupt() call returns. ** ** ^The [sqlite3_is_interrupted(D)] interface can be used to determine whether ** or not an interrupt is currently in effect for [database connection] D. */ SQLITE_API void sqlite3_interrupt(sqlite3*); SQLITE_API int sqlite3_is_interrupted(sqlite3*); /* ** CAPI3REF: Determine If An SQL Statement Is Complete ** | > | 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 | ** not effected by the sqlite3_interrupt(). ** ^A call to sqlite3_interrupt(D) that occurs when there are no running ** SQL statements is a no-op and has no effect on SQL statements ** that are started after the sqlite3_interrupt() call returns. ** ** ^The [sqlite3_is_interrupted(D)] interface can be used to determine whether ** or not an interrupt is currently in effect for [database connection] D. ** It returns 1 if an interrupt is currently in effect, or 0 otherwise. */ SQLITE_API void sqlite3_interrupt(sqlite3*); SQLITE_API int sqlite3_is_interrupted(sqlite3*); /* ** CAPI3REF: Determine If An SQL Statement Is Complete ** |
︙ | ︙ | |||
3695 3696 3697 3698 3699 3700 3701 | ** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback ** function X against [database connection] D, using property mask M ** and context pointer P. ^If the X callback is ** NULL or if the M mask is zero, then tracing is disabled. The ** M argument should be the bitwise OR-ed combination of ** zero or more [SQLITE_TRACE] constants. ** | | | > > | 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 | ** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback ** function X against [database connection] D, using property mask M ** and context pointer P. ^If the X callback is ** NULL or if the M mask is zero, then tracing is disabled. The ** M argument should be the bitwise OR-ed combination of ** zero or more [SQLITE_TRACE] constants. ** ** ^Each call to either sqlite3_trace(D,X,P) or sqlite3_trace_v2(D,M,X,P) ** overrides (cancels) all prior calls to sqlite3_trace(D,X,P) or ** sqlite3_trace_v2(D,M,X,P) for the [database connection] D. Each ** database connection may have at most one trace callback. ** ** ^The X callback is invoked whenever any of the events identified by ** mask M occur. ^The integer return value from the callback is currently ** ignored, though this may change in future releases. Callback ** implementations should return zero to ensure future compatibility. ** ** ^A trace callback is invoked with four arguments: callback(T,C,P,X). |
︙ | ︙ | |||
4065 4066 4067 4068 4069 4070 4071 | ** that check if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of that query parameter. ** ** The first parameter to these interfaces (hereafter referred to ** as F) must be one of: ** <ul> ** <li> A database filename pointer created by the SQLite core and | | | 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 | ** that check if a database file was a URI that contained a specific query ** parameter, and if so obtains the value of that query parameter. ** ** The first parameter to these interfaces (hereafter referred to ** as F) must be one of: ** <ul> ** <li> A database filename pointer created by the SQLite core and ** passed into the xOpen() method of a VFS implementation, or ** <li> A filename obtained from [sqlite3_db_filename()], or ** <li> A new filename constructed using [sqlite3_create_filename()]. ** </ul> ** If the F parameter is not one of the above, then the behavior is ** undefined and probably undesirable. Older versions of SQLite were ** more tolerant of invalid F parameters than newer versions. ** |
︙ | ︙ | |||
4178 4179 4180 4181 4182 4183 4184 | ** behavior. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*); /* ** CAPI3REF: Create and Destroy VFS Filenames ** | | | 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 | ** behavior. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*); /* ** CAPI3REF: Create and Destroy VFS Filenames ** ** These interfaces are provided for use by [VFS shim] implementations and ** are not useful outside of that context. ** ** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of ** database filename D with corresponding journal file J and WAL file W and ** with N URI parameters key/values pairs in the array P. The result from ** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that ** is safe to pass to routines like: |
︙ | ︙ | |||
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 | ** prepared statement S is an EXPLAIN statement, or 2 if the ** statement S is an EXPLAIN QUERY PLAN. ** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is ** an ordinary statement or a NULL pointer. */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using ** [sqlite3_step(S)] but has neither run to completion (returned | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 | ** prepared statement S is an EXPLAIN statement, or 2 if the ** statement S is an EXPLAIN QUERY PLAN. ** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is ** an ordinary statement or a NULL pointer. */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt); /* ** CAPI3REF: Change The EXPLAIN Setting For A Prepared Statement ** METHOD: sqlite3_stmt ** ** The sqlite3_stmt_explain(S,E) interface changes the EXPLAIN ** setting for [prepared statement] S. If E is zero, then S becomes ** a normal prepared statement. If E is 1, then S behaves as if ** its SQL text began with "[EXPLAIN]". If E is 2, then S behaves as if ** its SQL text began with "[EXPLAIN QUERY PLAN]". ** ** Calling sqlite3_stmt_explain(S,E) might cause S to be reprepared. ** SQLite tries to avoid a reprepare, but a reprepare might be necessary ** on the first transition into EXPLAIN or EXPLAIN QUERY PLAN mode. ** ** Because of the potential need to reprepare, a call to ** sqlite3_stmt_explain(S,E) will fail with SQLITE_ERROR if S cannot be ** reprepared because it was created using [sqlite3_prepare()] instead of ** the newer [sqlite3_prepare_v2()] or [sqlite3_prepare_v3()] interfaces and ** hence has no saved SQL text with which to reprepare. ** ** Changing the explain setting for a prepared statement does not change ** the original SQL text for the statement. Hence, if the SQL text originally ** began with EXPLAIN or EXPLAIN QUERY PLAN, but sqlite3_stmt_explain(S,0) ** is called to convert the statement into an ordinary statement, the EXPLAIN ** or EXPLAIN QUERY PLAN keywords will still appear in the sqlite3_sql(S) ** output, even though the statement now acts like a normal SQL statement. ** ** This routine returns SQLITE_OK if the explain mode is successfully ** changed, or an error code if the explain mode could not be changed. ** The explain mode cannot be changed while a statement is active. ** Hence, it is good practice to call [sqlite3_reset(S)] ** immediately prior to calling sqlite3_stmt_explain(S,E). */ SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using ** [sqlite3_step(S)] but has neither run to completion (returned |
︙ | ︙ | |||
4888 4889 4890 4891 4892 4893 4894 | ** ^The fifth argument to the BLOB and string binding interfaces controls ** or indicates the lifetime of the object referenced by the third parameter. ** These three options exist: ** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished ** with it may be passed. ^It is called to dispose of the BLOB or string even ** if the call to the bind API fails, except the destructor is not called if ** the third parameter is a NULL pointer or the fourth parameter is negative. | | | 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 | ** ^The fifth argument to the BLOB and string binding interfaces controls ** or indicates the lifetime of the object referenced by the third parameter. ** These three options exist: ** ^ (1) A destructor to dispose of the BLOB or string after SQLite has finished ** with it may be passed. ^It is called to dispose of the BLOB or string even ** if the call to the bind API fails, except the destructor is not called if ** the third parameter is a NULL pointer or the fourth parameter is negative. ** ^ (2) The special constant, [SQLITE_STATIC], may be passed to indicate that ** the application remains responsible for disposing of the object. ^In this ** case, the object and the provided pointer to it must remain valid until ** either the prepared statement is finalized or the same SQL parameter is ** bound to something else, whichever occurs sooner. ** ^ (3) The constant, [SQLITE_TRANSIENT], may be passed to indicate that the ** object is to be copied prior to the return from sqlite3_bind_*(). ^The ** object and pointer to it must remain valid until then. ^SQLite will then |
︙ | ︙ | |||
5567 5568 5569 5570 5571 5572 5573 | ** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S ** back to the beginning of its program. ** | | | | > | > > > > > > > > > > > | 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 | ** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S ** back to the beginning of its program. ** ** ^The return code from [sqlite3_reset(S)] indicates whether or not ** the previous evaluation of prepared statement S completed successfully. ** ^If [sqlite3_step(S)] has never before been called on S or if ** [sqlite3_step(S)] has not been called since the previous call ** to [sqlite3_reset(S)], then [sqlite3_reset(S)] will return ** [SQLITE_OK]. ** ** ^If the most recent call to [sqlite3_step(S)] for the ** [prepared statement] S indicated an error, then ** [sqlite3_reset(S)] returns an appropriate [error code]. ** ^The [sqlite3_reset(S)] interface might also return an [error code] ** if there were no prior errors but the process of resetting ** the prepared statement caused a new error. ^For example, if an ** [INSERT] statement with a [RETURNING] clause is only stepped one time, ** that one call to [sqlite3_step(S)] might return SQLITE_ROW but ** the overall statement might still fail and the [sqlite3_reset(S)] call ** might return SQLITE_BUSY if locking constraints prevent the ** database change from committing. Therefore, it is important that ** applications check the return code from [sqlite3_reset(S)] even if ** no prior call to [sqlite3_step(S)] indicated a problem. ** ** ^The [sqlite3_reset(S)] interface does not change the values ** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S. */ SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); /* |
︙ | ︙ | |||
5791 5792 5793 5794 5795 5796 5797 | ** schema structures such as [CHECK constraints], [DEFAULT clauses], ** [expression indexes], [partial indexes], or [generated columns]. ** <p> ** The SQLITE_DIRECTONLY flag is recommended for any ** [application-defined SQL function] ** that has side-effects or that could potentially leak sensitive information. ** This will prevent attacks in which an application is tricked | | | 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 | ** schema structures such as [CHECK constraints], [DEFAULT clauses], ** [expression indexes], [partial indexes], or [generated columns]. ** <p> ** The SQLITE_DIRECTONLY flag is recommended for any ** [application-defined SQL function] ** that has side-effects or that could potentially leak sensitive information. ** This will prevent attacks in which an application is tricked ** into using a database file that has had its schema surreptitiously ** modified to invoke the application-defined function in ways that are ** harmful. ** <p> ** Some people say it is good practice to set SQLITE_DIRECTONLY on all ** [application-defined SQL functions], regardless of whether or not they ** are security sensitive, as doing so prevents those functions from being used ** inside of the database schema, and thus ensures that the database |
︙ | ︙ | |||
8196 8197 8198 8199 8200 8201 8202 | ** behavior.)^ ** ** ^The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered by the ** calling thread or is not currently allocated. ** | | | | | 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 | ** behavior.)^ ** ** ^The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered by the ** calling thread or is not currently allocated. ** ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), ** sqlite3_mutex_leave(), or sqlite3_mutex_free() is a NULL pointer, ** then any of the four routines behaves as a no-op. ** ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. */ SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int); SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*); SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*); SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); |
︙ | ︙ | |||
8468 8469 8470 8471 8472 8473 8474 | #define SQLITE_TESTCTRL_RESULT_INTREAL 27 #define SQLITE_TESTCTRL_PRNG_SEED 28 #define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29 #define SQLITE_TESTCTRL_SEEK_COUNT 30 #define SQLITE_TESTCTRL_TRACEFLAGS 31 #define SQLITE_TESTCTRL_TUNE 32 #define SQLITE_TESTCTRL_LOGEST 33 | > | | 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 | #define SQLITE_TESTCTRL_RESULT_INTREAL 27 #define SQLITE_TESTCTRL_PRNG_SEED 28 #define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS 29 #define SQLITE_TESTCTRL_SEEK_COUNT 30 #define SQLITE_TESTCTRL_TRACEFLAGS 31 #define SQLITE_TESTCTRL_TUNE 32 #define SQLITE_TESTCTRL_LOGEST 33 #define SQLITE_TESTCTRL_USELONGDOUBLE 34 #define SQLITE_TESTCTRL_LAST 34 /* Largest TESTCTRL */ /* ** CAPI3REF: SQL Keyword Checking ** ** These routines provide access to the set of SQL language keywords ** recognized by SQLite. Applications can uses these routines to determine ** whether or not a specific identifier needs to be escaped (for example, |
︙ | ︙ | |||
9500 9501 9502 9503 9504 9505 9506 | ** the other connections to use as the blocking connection. ** ** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing | | | | 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 | ** the other connections to use as the blocking connection. ** ** ^(There may be at most one unlock-notify callback registered by a ** blocked connection. If sqlite3_unlock_notify() is called when the ** blocked connection already has a registered unlock-notify callback, ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is ** called with a NULL pointer as its second argument, then any existing ** unlock-notify callback is cancelled. ^The blocked connections ** unlock-notify callback may also be cancelled by closing the blocked ** connection using [sqlite3_close()]. ** ** The unlock-notify callback is not reentrant. If an application invokes ** any sqlite3_xxx API functions from within an unlock-notify callback, a ** crash or deadlock may be the result. ** ** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always |
︙ | ︙ | |||
9924 9925 9926 9927 9928 9929 9930 | ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT ** constraint handling. ** </dd> ** ** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt> ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the | | | 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 | ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT ** constraint handling. ** </dd> ** ** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt> ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the ** the [xConnect] or [xCreate] methods of a [virtual table] implementation ** prohibits that virtual table from being used from within triggers and ** views. ** </dd> ** ** [[SQLITE_VTAB_INNOCUOUS]]<dt>SQLITE_VTAB_INNOCUOUS</dt> ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the |
︙ | ︙ | |||
10114 10115 10116 10117 10118 10119 10120 | ** undefined and probably harmful. ** ** ^(A constraint on a virtual table of the form ** "[IN operator|column IN (...)]" is ** communicated to the xBestIndex method as a ** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use ** this constraint, it must set the corresponding | | | 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 | ** undefined and probably harmful. ** ** ^(A constraint on a virtual table of the form ** "[IN operator|column IN (...)]" is ** communicated to the xBestIndex method as a ** [SQLITE_INDEX_CONSTRAINT_EQ] constraint.)^ If xBestIndex wants to use ** this constraint, it must set the corresponding ** aConstraintUsage[].argvIndex to a positive integer. ^(Then, under ** the usual mode of handling IN operators, SQLite generates [bytecode] ** that invokes the [xFilter|xFilter() method] once for each value ** on the right-hand side of the IN operator.)^ Thus the virtual table ** only sees a single value from the right-hand side of the IN operator ** at a time. ** ** In some cases, however, it would be advantageous for the virtual |
︙ | ︙ | |||
10543 10544 10545 10546 10547 10548 10549 | ** operation; or 1 for inserts, updates, or deletes invoked by top-level ** triggers; or 2 for changes resulting from triggers called by top-level ** triggers; and so forth. ** ** When the [sqlite3_blob_write()] API is used to update a blob column, ** the pre-update hook is invoked with SQLITE_DELETE. This is because the ** in this case the new values are not available. In this case, when a | | | 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 | ** operation; or 1 for inserts, updates, or deletes invoked by top-level ** triggers; or 2 for changes resulting from triggers called by top-level ** triggers; and so forth. ** ** When the [sqlite3_blob_write()] API is used to update a blob column, ** the pre-update hook is invoked with SQLITE_DELETE. This is because the ** in this case the new values are not available. In this case, when a ** callback made with op==SQLITE_DELETE is actually a write using the ** sqlite3_blob_write() API, the [sqlite3_preupdate_blobwrite()] returns ** the index of the column being written. In other cases, where the ** pre-update hook is being invoked for some other reason, including a ** regular DELETE, sqlite3_preupdate_blobwrite() returns -1. ** ** See also: [sqlite3_update_hook()] */ |
︙ | ︙ | |||
13061 13062 13063 13064 13065 13066 13067 | ** significantly more efficient than those alternatives when used with ** "detail=column" tables. ** ** xPhraseNextColumn() ** See xPhraseFirstColumn above. */ struct Fts5ExtensionApi { | | | 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 | ** significantly more efficient than those alternatives when used with ** "detail=column" tables. ** ** xPhraseNextColumn() ** See xPhraseFirstColumn above. */ struct Fts5ExtensionApi { int iVersion; /* Currently always set to 2 */ void *(*xUserData)(Fts5Context*); int (*xColumnCount)(Fts5Context*); int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow); int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken); |
︙ | ︙ | |||
13290 13291 13292 13293 13294 13295 13296 | ** provide synonyms for prefixes). However, a non-prefix query like '1st' ** will match against "1st" and "first". This method does not require ** extra disk space, as no extra entries are added to the FTS index. ** On the other hand, it may require more CPU cycles to run MATCH queries, ** as separate queries of the FTS index are required for each synonym. ** ** When using methods (2) or (3), it is important that the tokenizer only | | | | 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 | ** provide synonyms for prefixes). However, a non-prefix query like '1st' ** will match against "1st" and "first". This method does not require ** extra disk space, as no extra entries are added to the FTS index. ** On the other hand, it may require more CPU cycles to run MATCH queries, ** as separate queries of the FTS index are required for each synonym. ** ** When using methods (2) or (3), it is important that the tokenizer only ** provide synonyms when tokenizing document text (method (3)) or query ** text (method (2)), not both. Doing so will not cause any errors, but is ** inefficient. */ typedef struct Fts5Tokenizer Fts5Tokenizer; typedef struct fts5_tokenizer fts5_tokenizer; struct fts5_tokenizer { int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut); void (*xDelete)(Fts5Tokenizer*); |
︙ | ︙ | |||
13339 13340 13341 13342 13343 13344 13345 | struct fts5_api { int iVersion; /* Currently always set to 2 */ /* Create a new tokenizer */ int (*xCreateTokenizer)( fts5_api *pApi, const char *zName, | | | | | 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 | struct fts5_api { int iVersion; /* Currently always set to 2 */ /* Create a new tokenizer */ int (*xCreateTokenizer)( fts5_api *pApi, const char *zName, void *pUserData, fts5_tokenizer *pTokenizer, void (*xDestroy)(void*) ); /* Find an existing tokenizer */ int (*xFindTokenizer)( fts5_api *pApi, const char *zName, void **ppUserData, fts5_tokenizer *pTokenizer ); /* Create a new auxiliary function */ int (*xCreateFunction)( fts5_api *pApi, const char *zName, void *pUserData, fts5_extension_function xFunction, void (*xDestroy)(void*) ); }; /* ** END OF REGISTRATION API |
︙ | ︙ | |||
13467 13468 13469 13470 13471 13472 13473 | /* ** The maximum number of terms in a compound SELECT statement. ** The code generator for compound SELECT statements does one ** level of recursion for each term. A stack overflow can result ** if the number of terms is too large. In practice, most SQL ** never has more than 3 or 4 terms. Use a value of 0 to disable | | | 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 | /* ** The maximum number of terms in a compound SELECT statement. ** The code generator for compound SELECT statements does one ** level of recursion for each term. A stack overflow can result ** if the number of terms is too large. In practice, most SQL ** never has more than 3 or 4 terms. Use a value of 0 to disable ** any limit on the number of terms in a compound SELECT. */ #ifndef SQLITE_MAX_COMPOUND_SELECT # define SQLITE_MAX_COMPOUND_SELECT 500 #endif /* ** The maximum number of opcodes in a VDBE program. |
︙ | ︙ | |||
14570 14571 14572 14573 14574 14575 14576 | ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to ** something between S (inclusive) and E (exclusive). ** ** In other words, S is a buffer and E is a pointer to the first byte after ** the end of buffer S. This macro returns true if P points to something ** contained within the buffer S. */ | | > > > > > > > > > > > > > > > > > > > > > > > | 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 | ** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to ** something between S (inclusive) and E (exclusive). ** ** In other words, S is a buffer and E is a pointer to the first byte after ** the end of buffer S. This macro returns true if P points to something ** contained within the buffer S. */ #define SQLITE_WITHIN(P,S,E) (((uptr)(P)>=(uptr)(S))&&((uptr)(P)<(uptr)(E))) /* ** P is one byte past the end of a large buffer. Return true if a span of bytes ** between S..E crosses the end of that buffer. In other words, return true ** if the sub-buffer S..E-1 overflows the buffer whose last byte is P-1. ** ** S is the start of the span. E is one byte past the end of end of span. ** ** P ** |-----------------| FALSE ** |-------| ** S E ** ** P ** |-----------------| ** |-------| TRUE ** S E ** ** P ** |-----------------| ** |-------| FALSE ** S E */ #define SQLITE_OVERFLOW(P,S,E) (((uptr)(S)<(uptr)(P))&&((uptr)(E)>(uptr)(P))) /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if |
︙ | ︙ | |||
14805 14806 14807 14808 14809 14810 14811 | void *pBusyArg; /* First arg to busy callback */ int nBusy; /* Incremented with each busy call */ }; /* ** Name of table that holds the database schema. ** | | | 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 | void *pBusyArg; /* First arg to busy callback */ int nBusy; /* Incremented with each busy call */ }; /* ** Name of table that holds the database schema. ** ** The PREFERRED names are used wherever possible. But LEGACY is also ** used for backwards compatibility. ** ** 1. Queries can use either the PREFERRED or the LEGACY names ** 2. The sqlite3_set_authorizer() callback uses the LEGACY name ** 3. The PRAGMA table_list statement uses the PREFERRED name ** ** The LEGACY names are stored in the internal symbol hash table |
︙ | ︙ | |||
14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 | typedef struct CteUse CteUse; typedef struct Db Db; typedef struct DbFixer DbFixer; typedef struct Schema Schema; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct FKey FKey; typedef struct FuncDestructor FuncDestructor; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct IndexedExpr IndexedExpr; typedef struct IndexSample IndexSample; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct OnOrUsing OnOrUsing; typedef struct Parse Parse; typedef struct ParseCleanup ParseCleanup; typedef struct PreUpdate PreUpdate; typedef struct PrintfArguments PrintfArguments; typedef struct RenameToken RenameToken; typedef struct Returning Returning; typedef struct RowSet RowSet; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SQLiteThread SQLiteThread; typedef struct SelectDest SelectDest; | > > | 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 | typedef struct CteUse CteUse; typedef struct Db Db; typedef struct DbFixer DbFixer; typedef struct Schema Schema; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct FKey FKey; typedef struct FpDecode FpDecode; typedef struct FuncDestructor FuncDestructor; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct IndexedExpr IndexedExpr; typedef struct IndexSample IndexSample; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct OnOrUsing OnOrUsing; typedef struct Parse Parse; typedef struct ParseCleanup ParseCleanup; typedef struct PreUpdate PreUpdate; typedef struct PrintfArguments PrintfArguments; typedef struct RCStr RCStr; typedef struct RenameToken RenameToken; typedef struct Returning Returning; typedef struct RowSet RowSet; typedef struct Savepoint Savepoint; typedef struct Select Select; typedef struct SQLiteThread SQLiteThread; typedef struct SelectDest SelectDest; |
︙ | ︙ | |||
15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 | SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); void disable_simulated_io_errors(void); void enable_simulated_io_errors(void); #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif #endif /* SQLITE_PAGER_H */ /************** End of pager.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include btree.h in the middle of sqliteInt.h *****************/ /************** Begin file btree.h *******************************************/ | > > > > | 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 | SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); void disable_simulated_io_errors(void); void enable_simulated_io_errors(void); #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif #ifdef SQLITE_USE_SEH SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager*); #endif #endif /* SQLITE_PAGER_H */ /************** End of pager.h ***********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include btree.h in the middle of sqliteInt.h *****************/ /************** Begin file btree.h *******************************************/ |
︙ | ︙ | |||
15903 15904 15905 15906 15907 15908 15909 | SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*); | < < | 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 | SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*); SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*); SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeIntegrityCheck( sqlite3 *db, /* Database connection that is running the check */ |
︙ | ︙ | |||
16380 16381 16382 16383 16384 16385 16386 | #define OPFLG_OUT3 0x20 /* out3: P3 is an output */ #define OPFLG_NCYCLE 0x40 /* ncycle:Cycles count against P1 */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x41, 0x00,\ /* 8 */ 0x01, 0x01, 0x01, 0x01, 0x03, 0x03, 0x01, 0x01,\ /* 16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x49, 0x49, 0x49,\ /* 24 */ 0x49, 0x01, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49,\ | | | | 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 | #define OPFLG_OUT3 0x20 /* out3: P3 is an output */ #define OPFLG_NCYCLE 0x40 /* ncycle:Cycles count against P1 */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x41, 0x00,\ /* 8 */ 0x01, 0x01, 0x01, 0x01, 0x03, 0x03, 0x01, 0x01,\ /* 16 */ 0x03, 0x03, 0x01, 0x12, 0x01, 0x49, 0x49, 0x49,\ /* 24 */ 0x49, 0x01, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49,\ /* 32 */ 0x41, 0x01, 0x41, 0x41, 0x41, 0x01, 0x41, 0x41,\ /* 40 */ 0x41, 0x41, 0x41, 0x26, 0x26, 0x41, 0x23, 0x0b,\ /* 48 */ 0x01, 0x01, 0x03, 0x03, 0x0b, 0x0b, 0x0b, 0x0b,\ /* 56 */ 0x0b, 0x0b, 0x01, 0x03, 0x03, 0x03, 0x01, 0x41,\ /* 64 */ 0x01, 0x00, 0x00, 0x02, 0x02, 0x08, 0x00, 0x10,\ /* 72 */ 0x10, 0x10, 0x00, 0x10, 0x00, 0x10, 0x10, 0x00,\ /* 80 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x02, 0x02,\ /* 88 */ 0x02, 0x00, 0x00, 0x12, 0x1e, 0x20, 0x40, 0x00,\ /* 96 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x40, 0x26, 0x26,\ /* 104 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26,\ /* 112 */ 0x40, 0x00, 0x12, 0x40, 0x40, 0x10, 0x40, 0x00,\ /* 120 */ 0x00, 0x00, 0x40, 0x00, 0x40, 0x40, 0x10, 0x10,\ /* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x50,\ /* 136 */ 0x00, 0x40, 0x04, 0x04, 0x00, 0x40, 0x50, 0x40,\ /* 144 */ 0x10, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x10, 0x00, 0x00, 0x06, 0x10, 0x00, 0x04,\ /* 160 */ 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 168 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x50, 0x40,\ /* 176 */ 0x00, 0x10, 0x10, 0x02, 0x00, 0x00, 0x00, 0x00,\ /* 184 */ 0x00, 0x00, 0x00,} |
︙ | ︙ | |||
16574 16575 16576 16577 16578 16579 16580 | # define VdbeModuleComment(X) #endif /* ** The VdbeCoverage macros are used to set a coverage testing point ** for VDBE branch instructions. The coverage testing points are line ** numbers in the sqlite3.c source file. VDBE branch coverage testing | | | | | 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 | # define VdbeModuleComment(X) #endif /* ** The VdbeCoverage macros are used to set a coverage testing point ** for VDBE branch instructions. The coverage testing points are line ** numbers in the sqlite3.c source file. VDBE branch coverage testing ** only works with an amalgamation build. That's ok since a VDBE branch ** coverage build designed for testing the test suite only. No application ** should ever ship with VDBE branch coverage measuring turned on. ** ** VdbeCoverage(v) // Mark the previously coded instruction ** // as a branch ** ** VdbeCoverageIf(v, conditional) // Mark previous if conditional true ** ** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken ** ** VdbeCoverageNeverTaken(v) // Previous branch is never taken ** ** VdbeCoverageNeverNull(v) // Previous three-way branch is only ** // taken on the first two ways. The ** // NULL option is not possible ** ** VdbeCoverageEqNe(v) // Previous OP_Jump is only interested ** // in distinguishing equal and not-equal. ** ** Every VDBE branch operation must be tagged with one of the macros above. ** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and ** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch() ** routine in vdbe.c, alerting the developer to the missed tag. ** ** During testing, the test application will invoke ** sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE,...) to set a callback ** routine that is invoked as each bytecode branch is taken. The callback ** contains the sqlite3.c source line number of the VdbeCoverage macro and ** flags to indicate whether or not the branch was taken. The test application ** is responsible for keeping track of this and reporting byte-code branches ** that are never taken. ** ** See the VdbeBranchTaken() macro and vdbeTakeBranch() function in the ** vdbe.c source file for additional information. */ |
︙ | ︙ | |||
16941 16942 16943 16944 16945 16946 16947 | # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE # define SQLITE_DEFAULT_SYNCHRONOUS 3 #endif /* ** Default synchronous levels. ** | | | 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 | # warning Use SQLITE_DEFAULT_SYNCHRONOUS=3 instead of SQLITE_EXTRA_DURABLE # define SQLITE_DEFAULT_SYNCHRONOUS 3 #endif /* ** Default synchronous levels. ** ** Note that (for historical reasons) the PAGER_SYNCHRONOUS_* macros differ ** from the SQLITE_DEFAULT_SYNCHRONOUS value by 1. ** ** PAGER_SYNCHRONOUS DEFAULT_SYNCHRONOUS ** OFF 1 0 ** NORMAL 2 1 ** FULL 3 2 ** EXTRA 4 3 |
︙ | ︙ | |||
16980 16981 16982 16983 16984 16985 16986 | Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** ** Most Schema objects are associated with a Btree. The exception is | | | 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 | Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** ** Most Schema objects are associated with a Btree. The exception is ** the Schema for the TEMP database (sqlite3.aDb[1]) which is free-standing. ** In shared cache mode, a single Schema object can be shared by multiple ** Btrees that refer to the same underlying BtShared object. ** ** Schema objects are automatically deallocated when the last Btree that ** references them is destroyed. The TEMP Schema is manually freed by ** sqlite3_close(). * |
︙ | ︙ | |||
17091 17092 17093 17094 17095 17096 17097 | u16 szTrue; /* True value of sz, even if disabled */ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ u32 nSlot; /* Number of lookaside slots allocated */ u32 anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ LookasideSlot *pInit; /* List of buffers not previously used */ LookasideSlot *pFree; /* List of available buffers */ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE | | | | 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 | u16 szTrue; /* True value of sz, even if disabled */ u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ u32 nSlot; /* Number of lookaside slots allocated */ u32 anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ LookasideSlot *pInit; /* List of buffers not previously used */ LookasideSlot *pFree; /* List of available buffers */ #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE LookasideSlot *pSmallInit; /* List of small buffers not previously used */ LookasideSlot *pSmallFree; /* List of available small buffers */ void *pMiddle; /* First byte past end of full-size buffers and ** the first byte of LOOKASIDE_SMALL buffers */ #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ void *pStart; /* First byte of available memory space */ void *pEnd; /* First byte past end of available space */ void *pTrueEnd; /* True value of pEnd, when db->pnBytesFreed!=0 */ }; struct LookasideSlot { LookasideSlot *pNext; /* Next buffer in the list of free buffers */ }; #define DisableLookaside db->lookaside.bDisable++;db->lookaside.sz=0 #define EnableLookaside db->lookaside.bDisable--;\ db->lookaside.sz=db->lookaside.bDisable?0:db->lookaside.szTrue /* Size of the smaller allocations in two-size lookaside */ #ifdef SQLITE_OMIT_TWOSIZE_LOOKASIDE # define LOOKASIDE_SMALL 0 #else # define LOOKASIDE_SMALL 128 #endif /* |
︙ | ︙ | |||
17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 | #define SQLITE_BalancedMerge 0x00200000 /* Balance multi-way merges */ #define SQLITE_ReleaseReg 0x00400000 /* Use OP_ReleaseReg for testing */ #define SQLITE_FlttnUnionAll 0x00800000 /* Disable the UNION ALL flattener */ /* TH3 expects this value ^^^^^^^^^^ See flatten04.test */ #define SQLITE_IndexedExpr 0x01000000 /* Pull exprs from index when able */ #define SQLITE_Coroutines 0x02000000 /* Co-routines for subqueries */ #define SQLITE_NullUnusedCols 0x04000000 /* NULL unused columns in subqueries */ #define SQLITE_AllOpts 0xffffffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) | > | 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 | #define SQLITE_BalancedMerge 0x00200000 /* Balance multi-way merges */ #define SQLITE_ReleaseReg 0x00400000 /* Use OP_ReleaseReg for testing */ #define SQLITE_FlttnUnionAll 0x00800000 /* Disable the UNION ALL flattener */ /* TH3 expects this value ^^^^^^^^^^ See flatten04.test */ #define SQLITE_IndexedExpr 0x01000000 /* Pull exprs from index when able */ #define SQLITE_Coroutines 0x02000000 /* Co-routines for subqueries */ #define SQLITE_NullUnusedCols 0x04000000 /* NULL unused columns in subqueries */ #define SQLITE_OnePass 0x08000000 /* Single-pass DELETE and UPDATE */ #define SQLITE_AllOpts 0xffffffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) #define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0) |
︙ | ︙ | |||
17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 | ** are assert() statements in the code to verify this. ** ** Value constraints (enforced via assert()): ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg ** SQLITE_FUNC_ANYORDER == NC_OrderAgg == SF_OrderByReqd ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API ** SQLITE_FUNC_DIRECT == SQLITE_DIRECTONLY from the API ** SQLITE_FUNC_UNSAFE == SQLITE_INNOCUOUS -- opposite meanings!!! ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API ** ** Note that even though SQLITE_FUNC_UNSAFE and SQLITE_INNOCUOUS have the ** same bit value, their meanings are inverted. SQLITE_FUNC_UNSAFE is | > | > | 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 | ** are assert() statements in the code to verify this. ** ** Value constraints (enforced via assert()): ** SQLITE_FUNC_MINMAX == NC_MinMaxAgg == SF_MinMaxAgg ** SQLITE_FUNC_ANYORDER == NC_OrderAgg == SF_OrderByReqd ** SQLITE_FUNC_LENGTH == OPFLAG_LENGTHARG ** SQLITE_FUNC_TYPEOF == OPFLAG_TYPEOFARG ** SQLITE_FUNC_BYTELEN == OPFLAG_BYTELENARG ** SQLITE_FUNC_CONSTANT == SQLITE_DETERMINISTIC from the API ** SQLITE_FUNC_DIRECT == SQLITE_DIRECTONLY from the API ** SQLITE_FUNC_UNSAFE == SQLITE_INNOCUOUS -- opposite meanings!!! ** SQLITE_FUNC_ENCMASK depends on SQLITE_UTF* macros in the API ** ** Note that even though SQLITE_FUNC_UNSAFE and SQLITE_INNOCUOUS have the ** same bit value, their meanings are inverted. SQLITE_FUNC_UNSAFE is ** used internally and if set means that the function has side effects. ** SQLITE_INNOCUOUS is used by application code and means "not unsafe". ** See multiple instances of tag-20230109-1. */ #define SQLITE_FUNC_ENCMASK 0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */ #define SQLITE_FUNC_LIKE 0x0004 /* Candidate for the LIKE optimization */ #define SQLITE_FUNC_CASE 0x0008 /* Case-sensitive LIKE-type function */ #define SQLITE_FUNC_EPHEM 0x0010 /* Ephemeral. Delete with VDBE */ #define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/ #define SQLITE_FUNC_LENGTH 0x0040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x0080 /* Built-in typeof() function */ #define SQLITE_FUNC_BYTELEN 0x00c0 /* Built-in octet_length() function */ #define SQLITE_FUNC_COUNT 0x0100 /* Built-in count(*) aggregate */ /* 0x0200 -- available for reuse */ #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a ** single query - might change over time */ |
︙ | ︙ | |||
18126 18127 18128 18129 18130 18131 18132 | ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign ** key is set to NULL. SETDFLT means that the foreign key is set ** to its default value. CASCADE means that a DELETE or UPDATE of the ** referenced table row is propagated into the row that holds the ** foreign key. ** ** The OE_Default value is a place holder that means to use whatever | | | 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 | ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign ** key is set to NULL. SETDFLT means that the foreign key is set ** to its default value. CASCADE means that a DELETE or UPDATE of the ** referenced table row is propagated into the row that holds the ** foreign key. ** ** The OE_Default value is a place holder that means to use whatever ** conflict resolution algorithm is required from context. ** ** The following symbolic values are used to record which type ** of conflict resolution action to take. */ #define OE_None 0 /* There is no constraint to check */ #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ #define OE_Abort 2 /* Back out changes but do no rollback transaction */ |
︙ | ︙ | |||
18540 18541 18542 18543 18544 18545 18546 | #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old ** EP_Unlikely: 134217728 times likelihood | | | 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 | #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old ** EP_Unlikely: 134217728 times likelihood ** TK_IN: ephemeral table holding RHS ** TK_SELECT_COLUMN: Number of columns on the LHS ** TK_SELECT: 1st register of result vector */ ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. ** TK_VARIABLE: variable number (always >= 1). ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ union { |
︙ | ︙ | |||
18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 | #define ExprAlwaysFalse(E) (((E)->flags&(EP_OuterON|EP_IsFalse))==EP_IsFalse) /* Macros used to ensure that the correct members of unions are accessed ** in Expr. */ #define ExprUseUToken(E) (((E)->flags&EP_IntValue)==0) #define ExprUseUValue(E) (((E)->flags&EP_IntValue)!=0) #define ExprUseXList(E) (((E)->flags&EP_xIsSelect)==0) #define ExprUseXSelect(E) (((E)->flags&EP_xIsSelect)!=0) #define ExprUseYTab(E) (((E)->flags&(EP_WinFunc|EP_Subrtn))==0) #define ExprUseYWin(E) (((E)->flags&EP_WinFunc)!=0) #define ExprUseYSub(E) (((E)->flags&EP_Subrtn)!=0) /* Flags for use with Expr.vvaFlags | > > | 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 | #define ExprAlwaysFalse(E) (((E)->flags&(EP_OuterON|EP_IsFalse))==EP_IsFalse) /* Macros used to ensure that the correct members of unions are accessed ** in Expr. */ #define ExprUseUToken(E) (((E)->flags&EP_IntValue)==0) #define ExprUseUValue(E) (((E)->flags&EP_IntValue)!=0) #define ExprUseWOfst(E) (((E)->flags&(EP_InnerON|EP_OuterON))==0) #define ExprUseWJoin(E) (((E)->flags&(EP_InnerON|EP_OuterON))!=0) #define ExprUseXList(E) (((E)->flags&EP_xIsSelect)==0) #define ExprUseXSelect(E) (((E)->flags&EP_xIsSelect)!=0) #define ExprUseYTab(E) (((E)->flags&(EP_WinFunc|EP_Subrtn))==0) #define ExprUseYWin(E) (((E)->flags&EP_WinFunc)!=0) #define ExprUseYSub(E) (((E)->flags&EP_Subrtn)!=0) /* Flags for use with Expr.vvaFlags |
︙ | ︙ | |||
18810 18811 18812 18813 18814 18815 18816 | unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ unsigned fromDDL :1; /* Comes from sqlite_schema */ unsigned isCte :1; /* This is a CTE */ unsigned notCte :1; /* This item may not match a CTE */ unsigned isUsing :1; /* u3.pUsing is valid */ unsigned isOn :1; /* u3.pOn was once valid and non-NULL */ | | | 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 | unsigned viaCoroutine :1; /* Implemented as a co-routine */ unsigned isRecursive :1; /* True for recursive reference in WITH */ unsigned fromDDL :1; /* Comes from sqlite_schema */ unsigned isCte :1; /* This is a CTE */ unsigned notCte :1; /* This item may not match a CTE */ unsigned isUsing :1; /* u3.pUsing is valid */ unsigned isOn :1; /* u3.pOn was once valid and non-NULL */ unsigned isSynthUsing :1; /* u3.pUsing is synthesized from NATURAL */ unsigned isNestedFrom :1; /* pSelect is a SF_NestedFrom subquery */ } fg; int iCursor; /* The VDBE cursor number used to access this table */ union { Expr *pOn; /* fg.isUsing==0 => The ON clause of a join */ IdList *pUsing; /* fg.isUsing==1 => The USING clause of a join */ } u3; |
︙ | ︙ | |||
19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 | Token constraintName;/* Name of the constraint currently being parsed */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ int nSelect; /* Number of SELECT stmts. Counter for Select.selId */ #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ ParseCleanup *pCleanup; /* List of cleanup operations to run after parse */ union { int addrCrTab; /* Address of OP_CreateBtree on CREATE TABLE */ Returning *pReturning; /* The RETURNING clause */ } u1; | > > > < < < < > | 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 | Token constraintName;/* Name of the constraint currently being parsed */ yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int regRoot; /* Register holding root page number for new objects */ int nMaxArg; /* Max args passed to user function by sub-program */ int nSelect; /* Number of SELECT stmts. Counter for Select.selId */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK u32 nProgressSteps; /* xProgress steps taken during sqlite3_prepare() */ #endif #ifndef SQLITE_OMIT_SHARED_CACHE int nTableLock; /* Number of locks in aTableLock */ TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ ParseCleanup *pCleanup; /* List of cleanup operations to run after parse */ union { int addrCrTab; /* Address of OP_CreateBtree on CREATE TABLE */ Returning *pReturning; /* The RETURNING clause */ } u1; u32 oldmask; /* Mask of old.* columns referenced */ u32 newmask; /* Mask of new.* columns referenced */ LogEst nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ u8 bReturning; /* Coding a RETURNING trigger */ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ u8 disableTriggers; /* True to disable triggers */ /************************************************************************** ** Fields above must be initialized to zero. The fields that follow, |
︙ | ︙ | |||
19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 | #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */ #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ | > | 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 | #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BYTELENARG 0xc0 /* OP_Column only for octet_length() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */ #define OPFLAG_FORDELETE 0x08 /* OP_Open should use BTREE_FORDELETE */ #define OPFLAG_P2ISREG 0x10 /* P2 to OP_Open** is a register number */ #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ #define OPFLAG_SAVEPOSITION 0x02 /* OP_Delete/Insert: save cursor pos */ #define OPFLAG_AUXDELETE 0x04 /* OP_Delete: index in a DELETE op */ |
︙ | ︙ | |||
19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 | }; #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) /* ** A pointer to this structure is used to communicate information ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. */ typedef struct { sqlite3 *db; /* The database being initialized */ | > > > > > > > > > > > > > > > > > > > | 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 | }; #define SQLITE_PRINTF_INTERNAL 0x01 /* Internal-use-only converters allowed */ #define SQLITE_PRINTF_SQLFUNC 0x02 /* SQL function arguments to VXPrintf */ #define SQLITE_PRINTF_MALLOCED 0x04 /* True if xText is allocated space */ #define isMalloced(X) (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0) /* ** The following object is the header for an "RCStr" or "reference-counted ** string". An RCStr is passed around and used like any other char* ** that has been dynamically allocated. The important interface ** differences: ** ** 1. RCStr strings are reference counted. They are deallocated ** when the reference count reaches zero. ** ** 2. Use sqlite3RCStrUnref() to free an RCStr string rather than ** sqlite3_free() ** ** 3. Make a (read-only) copy of a read-only RCStr string using ** sqlite3RCStrRef(). */ struct RCStr { u64 nRCRef; /* Number of references */ /* Total structure size should be a multiple of 8 bytes for alignment */ }; /* ** A pointer to this structure is used to communicate information ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. */ typedef struct { sqlite3 *db; /* The database being initialized */ |
︙ | ︙ | |||
19656 19657 19658 19659 19660 19661 19662 | #define INITFLAG_AlterRename 0x0001 /* Reparse after a RENAME */ #define INITFLAG_AlterDrop 0x0002 /* Reparse after a DROP COLUMN */ #define INITFLAG_AlterAdd 0x0003 /* Reparse after an ADD COLUMN */ /* Tuning parameters are set using SQLITE_TESTCTRL_TUNE and are controlled ** on debug-builds of the CLI using ".testctrl tune ID VALUE". Tuning ** parameters are for temporary use during development, to help find | | | 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 | #define INITFLAG_AlterRename 0x0001 /* Reparse after a RENAME */ #define INITFLAG_AlterDrop 0x0002 /* Reparse after a DROP COLUMN */ #define INITFLAG_AlterAdd 0x0003 /* Reparse after an ADD COLUMN */ /* Tuning parameters are set using SQLITE_TESTCTRL_TUNE and are controlled ** on debug-builds of the CLI using ".testctrl tune ID VALUE". Tuning ** parameters are for temporary use during development, to help find ** optimal values for parameters in the query planner. The should not ** be used on trunk check-ins. They are a temporary mechanism available ** for transient development builds only. ** ** Tuning parameters are numbered starting with 1. */ #define SQLITE_NTUNE 6 /* Should be zero for all trunk check-ins */ #ifdef SQLITE_DEBUG |
︙ | ︙ | |||
19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 | int bMemstat; /* True to enable memory status */ u8 bCoreMutex; /* True to enable core mutexing */ u8 bFullMutex; /* True to enable full mutexing */ u8 bOpenUri; /* True to interpret filenames as URIs */ u8 bUseCis; /* Use covering indices for full-scans */ u8 bSmallMalloc; /* Avoid large memory allocations if true */ u8 bExtraSchemaChecks; /* Verify type,name,tbl_name in schema */ int mxStrlen; /* Maximum string length */ int neverCorrupt; /* Database is always well-formed */ int szLookaside; /* Default lookaside buffer size */ int nLookaside; /* Default lookaside buffer count */ int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ sqlite3_mem_methods m; /* Low-level memory allocation interface */ sqlite3_mutex_methods mutex; /* Low-level mutex interface */ | > | 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 | int bMemstat; /* True to enable memory status */ u8 bCoreMutex; /* True to enable core mutexing */ u8 bFullMutex; /* True to enable full mutexing */ u8 bOpenUri; /* True to interpret filenames as URIs */ u8 bUseCis; /* Use covering indices for full-scans */ u8 bSmallMalloc; /* Avoid large memory allocations if true */ u8 bExtraSchemaChecks; /* Verify type,name,tbl_name in schema */ u8 bUseLongDouble; /* Make use of long double */ int mxStrlen; /* Maximum string length */ int neverCorrupt; /* Database is always well-formed */ int szLookaside; /* Default lookaside buffer size */ int nLookaside; /* Default lookaside buffer count */ int nStmtSpill; /* Stmt-journal spill-to-disk threshold */ sqlite3_mem_methods m; /* Low-level memory allocation interface */ sqlite3_mutex_methods mutex; /* Low-level mutex interface */ |
︙ | ︙ | |||
19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 | struct Walker { Parse *pParse; /* Parser context. */ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ int walkerDepth; /* Number of subqueries */ u16 eCode; /* A small processing code */ union { /* Extra data for callback */ NameContext *pNC; /* Naming context */ int n; /* A counter */ int iCur; /* A cursor number */ SrcList *pSrcList; /* FROM clause */ struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ struct RefSrcList *pRefSrcList; /* sqlite3ReferencesSrcList() */ | > | 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 | struct Walker { Parse *pParse; /* Parser context. */ int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ int walkerDepth; /* Number of subqueries */ u16 eCode; /* A small processing code */ u16 mWFlags; /* Use-dependent flags */ union { /* Extra data for callback */ NameContext *pNC; /* Naming context */ int n; /* A counter */ int iCur; /* A cursor number */ SrcList *pSrcList; /* FROM clause */ struct CCurHint *pCCurHint; /* Used by codeCursorHint() */ struct RefSrcList *pRefSrcList; /* sqlite3ReferencesSrcList() */ |
︙ | ︙ | |||
19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 | const char *zDb; /* Make sure all objects are contained in this database */ const char *zType; /* Type of the container - used for error messages */ const Token *pName; /* Name of the container - used for error messages */ }; /* Forward declarations */ SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*); SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*); SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*); SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker*, Select*); SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker*, Select*); | > | 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 | const char *zDb; /* Make sure all objects are contained in this database */ const char *zType; /* Type of the container - used for error messages */ const Token *pName; /* Name of the container - used for error messages */ }; /* Forward declarations */ SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprNN(Walker*, Expr*); SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*); SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*); SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*); SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*); SQLITE_PRIVATE int sqlite3SelectWalkNoop(Walker*, Select*); SQLITE_PRIVATE int sqlite3SelectWalkFail(Walker*, Select*); |
︙ | ︙ | |||
20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 | */ struct PrintfArguments { int nArg; /* Total number of arguments */ int nUsed; /* Number of arguments used so far */ sqlite3_value **apArg; /* The argument values */ }; SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); | > > > > > > > > > > > > > > | 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 | */ struct PrintfArguments { int nArg; /* Total number of arguments */ int nUsed; /* Number of arguments used so far */ sqlite3_value **apArg; /* The argument values */ }; /* ** An instance of this object receives the decoding of a floating point ** value into an approximate decimal representation. */ struct FpDecode { char sign; /* '+' or '-' */ char isSpecial; /* 1: Infinity 2: NaN */ int n; /* Significant digits in the decode */ int iDP; /* Location of the decimal point */ char *z; /* Start of significant digits */ char zBuf[24]; /* Storage for significant digits */ }; SQLITE_PRIVATE void sqlite3FpDecode(FpDecode*,double,int,int); SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); |
︙ | ︙ | |||
20478 20479 20480 20481 20482 20483 20484 | SQLITE_PRIVATE void sqlite3Vacuum(Parse*,Token*,Expr*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*, int, sqlite3_value*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, const Token*); SQLITE_PRIVATE int sqlite3ExprCompare(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr*,Expr*,int); SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList*,const ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(const Parse*,const Expr*,const Expr*, int); | | | 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 | SQLITE_PRIVATE void sqlite3Vacuum(Parse*,Token*,Expr*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*, int, sqlite3_value*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, const Token*); SQLITE_PRIVATE int sqlite3ExprCompare(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprCompareSkip(Expr*,Expr*,int); SQLITE_PRIVATE int sqlite3ExprListCompare(const ExprList*,const ExprList*, int); SQLITE_PRIVATE int sqlite3ExprImpliesExpr(const Parse*,const Expr*,const Expr*, int); SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr*,int,int); SQLITE_PRIVATE void sqlite3AggInfoPersistWalkerInit(Walker*,Parse*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3ExprCoveredByIndex(Expr*, int iCur, Index *pIdx); SQLITE_PRIVATE int sqlite3ReferencesSrcList(Parse*, Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); #ifndef SQLITE_UNTESTABLE |
︙ | ︙ | |||
20505 20506 20507 20508 20509 20510 20511 | SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr*); SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8); SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*); SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int); | | | 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 | SQLITE_PRIVATE int sqlite3ExprIdToTrueFalse(Expr*); SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8); SQLITE_PRIVATE int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*); SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int); SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint(Expr*,const SrcList*,int); #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*); #endif SQLITE_PRIVATE int sqlite3ExprIsInteger(const Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); |
︙ | ︙ | |||
20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 | SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64); SQLITE_PRIVATE i64 sqlite3RealToI64(double); SQLITE_PRIVATE int sqlite3Int64ToText(i64,char*); SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*); SQLITE_PRIVATE int sqlite3Atoi(const char*); | > | 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 | SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); SQLITE_PRIVATE void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); SQLITE_PRIVATE int sqlite3RealSameAsInt(double,sqlite3_int64); SQLITE_PRIVATE i64 sqlite3RealToI64(double); SQLITE_PRIVATE int sqlite3Int64ToText(i64,char*); SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8); SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); SQLITE_PRIVATE int sqlite3GetUInt32(const char*, u32*); SQLITE_PRIVATE int sqlite3Atoi(const char*); |
︙ | ︙ | |||
20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 | SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*); #else # define sqlite3FileSuffix3(X,Y) #endif SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,u8); SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context*); | > | 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 | SQLITE_PRIVATE void sqlite3FileSuffix3(const char*, char*); #else # define sqlite3FileSuffix3(X,Y) #endif SQLITE_PRIVATE u8 sqlite3GetBoolean(const char *z,u8); SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value*, void(*)(void*)); SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); SQLITE_PRIVATE void sqlite3ValueSetNull(sqlite3_value*); SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); #ifndef SQLITE_UNTESTABLE SQLITE_PRIVATE void sqlite3ResultIntReal(sqlite3_context*); |
︙ | ︙ | |||
20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 | ); SQLITE_PRIVATE void sqlite3NoopDestructor(void*); SQLITE_PRIVATE void *sqlite3OomFault(sqlite3*); SQLITE_PRIVATE void sqlite3OomClear(sqlite3*); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum*, i64); SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum*, u8); SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*); SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); | > > > > > | 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 | ); SQLITE_PRIVATE void sqlite3NoopDestructor(void*); SQLITE_PRIVATE void *sqlite3OomFault(sqlite3*); SQLITE_PRIVATE void sqlite3OomClear(sqlite3*); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); SQLITE_PRIVATE char *sqlite3RCStrRef(char*); SQLITE_PRIVATE void sqlite3RCStrUnref(char*); SQLITE_PRIVATE char *sqlite3RCStrNew(u64); SQLITE_PRIVATE char *sqlite3RCStrResize(char*,u64); SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); SQLITE_PRIVATE int sqlite3StrAccumEnlarge(StrAccum*, i64); SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum*, u8); SQLITE_PRIVATE void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*); SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); |
︙ | ︙ | |||
21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 | #if SQLITE_MAX_EXPR_DEPTH>0 SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *); SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int); #else #define sqlite3SelectExprHeight(x) 0 #define sqlite3ExprCheckHeight(x,y) #endif SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*); SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32); #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db); | > | 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 | #if SQLITE_MAX_EXPR_DEPTH>0 SQLITE_PRIVATE int sqlite3SelectExprHeight(const Select *); SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int); #else #define sqlite3SelectExprHeight(x) 0 #define sqlite3ExprCheckHeight(x,y) #endif SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr*,int); SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*); SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32); #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db); |
︙ | ︙ | |||
21374 21375 21376 21377 21378 21379 21380 | #ifdef SQLITE_32BIT_ROWID "32BIT_ROWID", #endif #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC "4_BYTE_ALIGNED_MALLOC", #endif | < < < | 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 | #ifdef SQLITE_32BIT_ROWID "32BIT_ROWID", #endif #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC "4_BYTE_ALIGNED_MALLOC", #endif #ifdef SQLITE_ALLOW_COVERING_INDEX_SCAN # if SQLITE_ALLOW_COVERING_INDEX_SCAN != 1 "ALLOW_COVERING_INDEX_SCAN=" CTIMEOPT_VAL(SQLITE_ALLOW_COVERING_INDEX_SCAN), # endif #endif #ifdef SQLITE_ALLOW_URI_AUTHORITY "ALLOW_URI_AUTHORITY", |
︙ | ︙ | |||
21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 | "INLINE_MEMCPY", #endif #ifdef SQLITE_INT64_TYPE "INT64_TYPE", #endif #ifdef SQLITE_INTEGRITY_CHECK_ERROR_MAX "INTEGRITY_CHECK_ERROR_MAX=" CTIMEOPT_VAL(SQLITE_INTEGRITY_CHECK_ERROR_MAX), #endif #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS "LIKE_DOESNT_MATCH_BLOBS", #endif #ifdef SQLITE_LOCK_TRACE "LOCK_TRACE", #endif | > > > | 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 | "INLINE_MEMCPY", #endif #ifdef SQLITE_INT64_TYPE "INT64_TYPE", #endif #ifdef SQLITE_INTEGRITY_CHECK_ERROR_MAX "INTEGRITY_CHECK_ERROR_MAX=" CTIMEOPT_VAL(SQLITE_INTEGRITY_CHECK_ERROR_MAX), #endif #ifdef SQLITE_LEGACY_JSON_VALID "LEGACY_JSON_VALID", #endif #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS "LIKE_DOESNT_MATCH_BLOBS", #endif #ifdef SQLITE_LOCK_TRACE "LOCK_TRACE", #endif |
︙ | ︙ | |||
22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 | SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */ 1, /* bCoreMutex */ SQLITE_THREADSAFE==1, /* bFullMutex */ SQLITE_USE_URI, /* bOpenUri */ SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */ 0, /* bSmallMalloc */ 1, /* bExtraSchemaChecks */ 0x7ffffffe, /* mxStrlen */ 0, /* neverCorrupt */ SQLITE_DEFAULT_LOOKASIDE, /* szLookaside, nLookaside */ SQLITE_STMTJRNL_SPILL, /* nStmtSpill */ {0,0,0,0,0,0,0,0}, /* m */ {0,0,0,0,0,0,0,0,0}, /* mutex */ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */ | > | 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 | SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */ 1, /* bCoreMutex */ SQLITE_THREADSAFE==1, /* bFullMutex */ SQLITE_USE_URI, /* bOpenUri */ SQLITE_ALLOW_COVERING_INDEX_SCAN, /* bUseCis */ 0, /* bSmallMalloc */ 1, /* bExtraSchemaChecks */ sizeof(LONGDOUBLE_TYPE)>8, /* bUseLongDouble */ 0x7ffffffe, /* mxStrlen */ 0, /* neverCorrupt */ SQLITE_DEFAULT_LOOKASIDE, /* szLookaside, nLookaside */ SQLITE_STMTJRNL_SPILL, /* nStmtSpill */ {0,0,0,0,0,0,0,0}, /* m */ {0,0,0,0,0,0,0,0,0}, /* mutex */ {0,0,0,0,0,0,0,0,0,0,0,0,0},/* pcache2 */ |
︙ | ︙ | |||
22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 | /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Elements of the linked list at Vdbe.pAuxData */ typedef struct AuxData AuxData; /* Types of VDBE cursors */ #define CURTYPE_BTREE 0 #define CURTYPE_SORTER 1 #define CURTYPE_VTAB 2 #define CURTYPE_PSEUDO 3 /* | > > > | 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 | /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Elements of the linked list at Vdbe.pAuxData */ typedef struct AuxData AuxData; /* A cache of large TEXT or BLOB values in a VdbeCursor */ typedef struct VdbeTxtBlbCache VdbeTxtBlbCache; /* Types of VDBE cursors */ #define CURTYPE_BTREE 0 #define CURTYPE_SORTER 1 #define CURTYPE_VTAB 2 #define CURTYPE_PSEUDO 3 /* |
︙ | ︙ | |||
22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 | u8 seekOp; /* Most recent seek operation on this cursor */ u8 wrFlag; /* The wrFlag argument to sqlite3BtreeCursor() */ #endif Bool isEphemeral:1; /* True for an ephemeral table */ Bool useRandomRowid:1; /* Generate new record numbers semi-randomly */ Bool isOrdered:1; /* True if the table is not BTREE_UNORDERED */ Bool noReuse:1; /* OpenEphemeral may not reuse this cursor */ u16 seekHit; /* See the OP_SeekHit and OP_IfNoHope opcodes */ union { /* pBtx for isEphermeral. pAltMap otherwise */ Btree *pBtx; /* Separate file holding temporary table */ u32 *aAltMap; /* Mapping from table to index column numbers */ } ub; i64 seqCount; /* Sequence counter */ | > | 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 | u8 seekOp; /* Most recent seek operation on this cursor */ u8 wrFlag; /* The wrFlag argument to sqlite3BtreeCursor() */ #endif Bool isEphemeral:1; /* True for an ephemeral table */ Bool useRandomRowid:1; /* Generate new record numbers semi-randomly */ Bool isOrdered:1; /* True if the table is not BTREE_UNORDERED */ Bool noReuse:1; /* OpenEphemeral may not reuse this cursor */ Bool colCache:1; /* pCache pointer is initialized and non-NULL */ u16 seekHit; /* See the OP_SeekHit and OP_IfNoHope opcodes */ union { /* pBtx for isEphermeral. pAltMap otherwise */ Btree *pBtx; /* Separate file holding temporary table */ u32 *aAltMap; /* Mapping from table to index column numbers */ } ub; i64 seqCount; /* Sequence counter */ |
︙ | ︙ | |||
22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 | u32 *aOffset; /* Pointer to aType[nField] */ const u8 *aRow; /* Data for the current row, if all on one page */ u32 payloadSize; /* Total number of bytes in the record */ u32 szRow; /* Byte available in aRow */ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK u64 maskUsed; /* Mask of columns used by this cursor */ #endif /* 2*nField extra array elements allocated for aType[], beyond the one ** static element declared in the structure. nField total array slots for ** aType[] and nField+1 array slots for aOffset[] */ u32 aType[1]; /* Type values record decode. MUST BE LAST */ }; /* Return true if P is a null-only cursor */ #define IsNullCursor(P) \ ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0) | > < > > > > > > > > > > > > > > | 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 | u32 *aOffset; /* Pointer to aType[nField] */ const u8 *aRow; /* Data for the current row, if all on one page */ u32 payloadSize; /* Total number of bytes in the record */ u32 szRow; /* Byte available in aRow */ #ifdef SQLITE_ENABLE_COLUMN_USED_MASK u64 maskUsed; /* Mask of columns used by this cursor */ #endif VdbeTxtBlbCache *pCache; /* Cache of large TEXT or BLOB values */ /* 2*nField extra array elements allocated for aType[], beyond the one ** static element declared in the structure. nField total array slots for ** aType[] and nField+1 array slots for aOffset[] */ u32 aType[1]; /* Type values record decode. MUST BE LAST */ }; /* Return true if P is a null-only cursor */ #define IsNullCursor(P) \ ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0) /* ** A value for VdbeCursor.cacheStatus that means the cache is always invalid. */ #define CACHE_STALE 0 /* ** Large TEXT or BLOB values can be slow to load, so we want to avoid ** loading them more than once. For that reason, large TEXT and BLOB values ** can be stored in a cache defined by this object, and attached to the ** VdbeCursor using the pCache field. */ struct VdbeTxtBlbCache { char *pCValue; /* A RCStr buffer to hold the value */ i64 iOffset; /* File offset of the row being cached */ int iCol; /* Column for which the cache is valid */ u32 cacheStatus; /* Vdbe.cacheCtr value */ u32 colCacheCtr; /* Column cache counter */ }; /* ** When a sub-program is executed (OP_Program), a structure of this type ** is allocated to store the current value of the program counter, as ** well as the current memory cell array and various other frame specific ** values stored in the Vdbe struct. When the sub-program is finished, ** these values are copied back to the Vdbe from the VdbeFrame structure, |
︙ | ︙ | |||
22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 | i64 startTime; /* Time when query started - used for profiling */ #endif #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ u32 nWrite; /* Number of write operations that have occurred */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ u8 eVdbeState; /* On of the VDBE_*_STATE values */ bft expired:2; /* 1: recompile VM immediately 2: when convenient */ | > | > | 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 | i64 startTime; /* Time when query started - used for profiling */ #endif #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ u32 nWrite; /* Number of write operations that have occurred */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u16 nResAlloc; /* Column slots allocated to aColName[] */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ u8 eVdbeState; /* On of the VDBE_*_STATE values */ bft expired:2; /* 1: recompile VM immediately 2: when convenient */ bft explain:2; /* 0: normal, 1: EXPLAIN, 2: EXPLAIN QUERY PLAN */ bft changeCntOn:1; /* True to update the change-counter */ bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for statements that do not write */ bft bIsReader:1; /* True for statements that read */ bft haveEqpOps:1; /* Bytecode supports EXPLAIN QUERY PLAN */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ u32 aCounter[9]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ #ifdef SQLITE_ENABLE_NORMALIZE char *zNormSql; /* Normalization of the associated SQL statement */ DblquoteStr *pDblStr; /* List of double-quoted string literals */ |
︙ | ︙ | |||
23041 23042 23043 23044 23045 23046 23047 | UnpackedRecord *pUnpacked; /* Unpacked version of aRecord[] */ UnpackedRecord *pNewUnpacked; /* Unpacked version of new.* record */ int iNewReg; /* Register for new.* values */ int iBlobWrite; /* Value returned by preupdate_blobwrite() */ i64 iKey1; /* First key value passed to hook */ i64 iKey2; /* Second key value passed to hook */ Mem *aNew; /* Array of new.* values */ | | | 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 | UnpackedRecord *pUnpacked; /* Unpacked version of aRecord[] */ UnpackedRecord *pNewUnpacked; /* Unpacked version of new.* record */ int iNewReg; /* Register for new.* values */ int iBlobWrite; /* Value returned by preupdate_blobwrite() */ i64 iKey1; /* First key value passed to hook */ i64 iKey2; /* Second key value passed to hook */ Mem *aNew; /* Array of new.* values */ Table *pTab; /* Schema object being updated */ Index *pPk; /* PK index if pTab is WITHOUT ROWID */ }; /* ** An instance of this object is used to pass an vector of values into ** OP_VFilter, the xFilter method of a virtual table. The vector is the ** set of values on the right-hand side of an IN constraint. |
︙ | ︙ | |||
23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 | #else SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem*,int); #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem*); #endif SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, u8, u8); SQLITE_PRIVATE int sqlite3IntFloatCompare(i64,double); SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem*); SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem*, int ifNull); | > | 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 | #else SQLITE_PRIVATE int sqlite3VdbeMemSetZeroBlob(Mem*,int); #endif #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeMemIsRowSet(const Mem*); #endif SQLITE_PRIVATE int sqlite3VdbeMemSetRowSet(Mem*); SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, u8, u8); SQLITE_PRIVATE int sqlite3IntFloatCompare(i64,double); SQLITE_PRIVATE i64 sqlite3VdbeIntValue(const Mem*); SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); SQLITE_PRIVATE int sqlite3VdbeBooleanValue(Mem*, int ifNull); |
︙ | ︙ | |||
23727 23728 23729 23730 23731 23732 23733 | ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates ** the 2-digit day which is the last integer in the set. ** ** The function returns the number of successful conversions. */ static int getDigits(const char *zDate, const char *zFormat, ...){ /* The aMx[] array translates the 3rd character of each format | | | | 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 | ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates ** the 2-digit day which is the last integer in the set. ** ** The function returns the number of successful conversions. */ static int getDigits(const char *zDate, const char *zFormat, ...){ /* The aMx[] array translates the 3rd character of each format ** spec into a max size: a b c d e f */ static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 }; va_list ap; int cnt = 0; char nextC; va_start(ap, zFormat); do{ char N = zFormat[0] - '0'; char min = zFormat[1] - '0'; |
︙ | ︙ | |||
24069 24070 24071 24072 24073 24074 24075 | p->validYMD = 1; } /* ** Compute the Hour, Minute, and Seconds from the julian day number. */ static void computeHMS(DateTime *p){ | | | | | < < < | | | 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 | p->validYMD = 1; } /* ** Compute the Hour, Minute, and Seconds from the julian day number. */ static void computeHMS(DateTime *p){ int day_ms, day_min; /* milliseconds, minutes into the day */ if( p->validHMS ) return; computeJD(p); day_ms = (int)((p->iJD + 43200000) % 86400000); p->s = (day_ms % 60000)/1000.0; day_min = day_ms/60000; p->m = day_min % 60; p->h = day_min / 60; p->rawS = 0; p->validHMS = 1; } /* ** Compute both YMD and HMS */ |
︙ | ︙ | |||
24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 | { 6, "second", 4.6427e+14, 1.0 }, { 6, "minute", 7.7379e+12, 60.0 }, { 4, "hour", 1.2897e+11, 3600.0 }, { 3, "day", 5373485.0, 86400.0 }, { 5, "month", 176546.0, 2592000.0 }, { 4, "year", 14713.0, 31536000.0 }, }; /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours | > > > > > > > > > > > > > > > > > > > | 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 | { 6, "second", 4.6427e+14, 1.0 }, { 6, "minute", 7.7379e+12, 60.0 }, { 4, "hour", 1.2897e+11, 3600.0 }, { 3, "day", 5373485.0, 86400.0 }, { 5, "month", 176546.0, 2592000.0 }, { 4, "year", 14713.0, 31536000.0 }, }; /* ** If the DateTime p is raw number, try to figure out if it is ** a julian day number of a unix timestamp. Set the p value ** appropriately. */ static void autoAdjustDate(DateTime *p){ if( !p->rawS || p->validJD ){ p->rawS = 0; }else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */ && p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */ ){ double r = p->s*1000.0 + 210866760000000.0; clearYMD_HMS_TZ(p); p->iJD = (sqlite3_int64)(r + 0.5); p->validJD = 1; p->rawS = 0; } } /* ** Process a modifier to a date-time stamp. The modifiers are ** as follows: ** ** NNN days ** NNN hours |
︙ | ︙ | |||
24301 24302 24303 24304 24305 24306 24307 | ** auto ** ** If rawS is available, then interpret as a julian day number, or ** a unix timestamp, depending on its magnitude. */ if( sqlite3_stricmp(z, "auto")==0 ){ if( idx>1 ) return 1; /* IMP: R-33611-57934 */ | < < < < < < < | < < < | < | 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 | ** auto ** ** If rawS is available, then interpret as a julian day number, or ** a unix timestamp, depending on its magnitude. */ if( sqlite3_stricmp(z, "auto")==0 ){ if( idx>1 ) return 1; /* IMP: R-33611-57934 */ autoAdjustDate(p); rc = 0; } break; } case 'j': { /* ** julianday ** |
︙ | ︙ | |||
24479 24480 24481 24482 24483 24484 24485 | case '5': case '6': case '7': case '8': case '9': { double rRounder; int i; | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > > > > > > > > > | | | | < | 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 | case '5': case '6': case '7': case '8': case '9': { double rRounder; int i; int Y,M,D,h,m,x; const char *z2 = z; char z0 = z[0]; for(n=1; z[n]; n++){ if( z[n]==':' ) break; if( sqlite3Isspace(z[n]) ) break; if( z[n]=='-' ){ if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break; if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break; } } if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){ assert( rc==1 ); break; } if( z[n]=='-' ){ /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the ** specified number of years, months, and days. MM is limited to ** the range 0-11 and DD is limited to 0-30. */ if( z0!='+' && z0!='-' ) break; /* Must start with +/- */ if( n==5 ){ if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break; }else{ assert( n==6 ); if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break; z++; } if( M>=12 ) break; /* M range 0..11 */ if( D>=31 ) break; /* D range 0..30 */ computeYMD_HMS(p); p->validJD = 0; if( z0=='-' ){ p->Y -= Y; p->M -= M; D = -D; }else{ p->Y += Y; p->M += M; } x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; computeJD(p); p->validHMS = 0; p->validYMD = 0; p->iJD += (i64)D*86400000; if( z[11]==0 ){ rc = 0; break; } if( sqlite3Isspace(z[11]) && getDigits(&z[12], "20c:20e", &h, &m)==2 ){ z2 = &z[12]; n = 2; }else{ break; } } if( z2[n]==':' ){ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the ** specified number of hours, minutes, seconds, and fractional seconds ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be ** omitted. */ DateTime tx; sqlite3_int64 day; if( !sqlite3Isdigit(*z2) ) z2++; memset(&tx, 0, sizeof(tx)); if( parseHhMmSs(z2, &tx) ) break; computeJD(&tx); tx.iJD -= 43200000; day = tx.iJD/86400000; tx.iJD -= day*86400000; if( z0=='-' ) tx.iJD = -tx.iJD; computeJD(p); clearYMD_HMS_TZ(p); p->iJD += tx.iJD; rc = 0; break; } /* If control reaches this point, it means the transformation is ** one of the forms like "+NNN days". */ z += n; while( sqlite3Isspace(*z) ) z++; n = sqlite3Strlen30(z); if( n>10 || n<3 ) break; if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; computeJD(p); assert( rc==1 ); rRounder = r<0 ? -0.5 : +0.5; for(i=0; i<ArraySize(aXformType); i++){ if( aXformType[i].nName==n && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit ){ switch( i ){ case 4: { /* Special processing to add months */ assert( strcmp(aXformType[i].zName,"month")==0 ); computeYMD_HMS(p); p->M += (int)r; x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; p->Y += x; p->M -= x*12; p->validJD = 0; |
︙ | ︙ | |||
24684 24685 24686 24687 24688 24689 24690 | zBuf[12] = '0' + (x.h/10)%10; zBuf[13] = '0' + (x.h)%10; zBuf[14] = ':'; zBuf[15] = '0' + (x.m/10)%10; zBuf[16] = '0' + (x.m)%10; zBuf[17] = ':'; if( x.useSubsec ){ | | | 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 | zBuf[12] = '0' + (x.h/10)%10; zBuf[13] = '0' + (x.h)%10; zBuf[14] = ':'; zBuf[15] = '0' + (x.m/10)%10; zBuf[16] = '0' + (x.m)%10; zBuf[17] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[18] = '0' + (s/10000)%10; zBuf[19] = '0' + (s/1000)%10; zBuf[20] = '.'; zBuf[21] = '0' + (s/100)%10; zBuf[22] = '0' + (s/10)%10; zBuf[23] = '0' + (s)%10; zBuf[24] = 0; |
︙ | ︙ | |||
24731 24732 24733 24734 24735 24736 24737 | zBuf[0] = '0' + (x.h/10)%10; zBuf[1] = '0' + (x.h)%10; zBuf[2] = ':'; zBuf[3] = '0' + (x.m/10)%10; zBuf[4] = '0' + (x.m)%10; zBuf[5] = ':'; if( x.useSubsec ){ | | | 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 | zBuf[0] = '0' + (x.h/10)%10; zBuf[1] = '0' + (x.h)%10; zBuf[2] = ':'; zBuf[3] = '0' + (x.m/10)%10; zBuf[4] = '0' + (x.m)%10; zBuf[5] = ':'; if( x.useSubsec ){ s = (int)(1000.0*x.s + 0.5); zBuf[6] = '0' + (s/10000)%10; zBuf[7] = '0' + (s/1000)%10; zBuf[8] = '.'; zBuf[9] = '0' + (s/100)%10; zBuf[10] = '0' + (s/10)%10; zBuf[11] = '0' + (s)%10; zBuf[12] = 0; |
︙ | ︙ | |||
24802 24803 24804 24805 24806 24807 24808 | ** %H hour 00-24 ** %j day of year 000-366 ** %J ** julian day number ** %m month 01-12 ** %M minute 00-59 ** %s seconds since 1970-01-01 ** %S seconds 00-59 | | | 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 | ** %H hour 00-24 ** %j day of year 000-366 ** %J ** julian day number ** %m month 01-12 ** %M minute 00-59 ** %s seconds since 1970-01-01 ** %S seconds 00-59 ** %w day of week 0-6 Sunday==0 ** %W week of year 00-53 ** %Y year 0000-9999 ** %% % */ static void strftimeFunc( sqlite3_context *context, int argc, |
︙ | ︙ | |||
24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 | sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); dateFunc(context, 0, 0); } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 | sqlite3_context *context, int NotUsed, sqlite3_value **NotUsed2 ){ UNUSED_PARAMETER2(NotUsed, NotUsed2); dateFunc(context, 0, 0); } /* ** timediff(DATE1, DATE2) ** ** Return the amount of time that must be added to DATE2 in order to ** convert it into DATE2. The time difference format is: ** ** +YYYY-MM-DD HH:MM:SS.SSS ** ** The initial "+" becomes "-" if DATE1 occurs before DATE2. For ** date/time values A and B, the following invariant should hold: ** ** datetime(A) == (datetime(B, timediff(A,B)) ** ** Both DATE arguments must be either a julian day number, or an ** ISO-8601 string. The unix timestamps are not supported by this ** routine. */ static void timediffFunc( sqlite3_context *context, int NotUsed1, sqlite3_value **argv ){ char sign; int Y, M; DateTime d1, d2; sqlite3_str sRes; UNUSED_PARAMETER(NotUsed1); if( isDate(context, 1, &argv[0], &d1) ) return; if( isDate(context, 1, &argv[1], &d2) ) return; computeYMD_HMS(&d1); computeYMD_HMS(&d2); if( d1.iJD>=d2.iJD ){ sign = '+'; Y = d1.Y - d2.Y; if( Y ){ d2.Y = d1.Y; d2.validJD = 0; computeJD(&d2); } M = d1.M - d2.M; if( M<0 ){ Y--; M += 12; } if( M!=0 ){ d2.M = d1.M; d2.validJD = 0; computeJD(&d2); } while( d1.iJD<d2.iJD ){ M--; if( M<0 ){ M = 11; Y--; } d2.M--; if( d2.M<1 ){ d2.M = 12; d2.Y--; } d2.validJD = 0; computeJD(&d2); } d1.iJD -= d2.iJD; d1.iJD += (u64)1486995408 * (u64)100000; }else /* d1<d2 */{ sign = '-'; Y = d2.Y - d1.Y; if( Y ){ d2.Y = d1.Y; d2.validJD = 0; computeJD(&d2); } M = d2.M - d1.M; if( M<0 ){ Y--; M += 12; } if( M!=0 ){ d2.M = d1.M; d2.validJD = 0; computeJD(&d2); } while( d1.iJD>d2.iJD ){ M--; if( M<0 ){ M = 11; Y--; } d2.M++; if( d2.M>12 ){ d2.M = 1; d2.Y++; } d2.validJD = 0; computeJD(&d2); } d1.iJD = d2.iJD - d1.iJD; d1.iJD += (u64)1486995408 * (u64)100000; } d1.validYMD = 0; d1.validHMS = 0; d1.validTZ = 0; computeYMD_HMS(&d1); sqlite3StrAccumInit(&sRes, 0, 0, 0, 100); sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f", sign, Y, M, d1.D-1, d1.h, d1.m, d1.s); sqlite3ResultStrAccum(context, &sRes); } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( |
︙ | ︙ | |||
25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 | #ifndef SQLITE_OMIT_DATETIME_FUNCS PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), PURE_DATE(date, -1, 0, 0, dateFunc ), PURE_DATE(time, -1, 0, 0, timeFunc ), PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), DFUNCTION(current_date, 0, 0, 0, cdateFunc ), #else STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), | > | 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 | #ifndef SQLITE_OMIT_DATETIME_FUNCS PURE_DATE(julianday, -1, 0, 0, juliandayFunc ), PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ), PURE_DATE(date, -1, 0, 0, dateFunc ), PURE_DATE(time, -1, 0, 0, timeFunc ), PURE_DATE(datetime, -1, 0, 0, datetimeFunc ), PURE_DATE(strftime, -1, 0, 0, strftimeFunc ), PURE_DATE(timediff, 2, 0, 0, timediffFunc ), DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), DFUNCTION(current_date, 0, 0, 0, cdateFunc ), #else STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), |
︙ | ︙ | |||
25169 25170 25171 25172 25173 25174 25175 | && op!=SQLITE_FCNTL_LOCK_TIMEOUT && op!=SQLITE_FCNTL_CKPT_DONE && op!=SQLITE_FCNTL_CKPT_START ){ /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite ** is using a regular VFS, it is called after the corresponding ** transaction has been committed. Injecting a fault at this point | | | 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 | && op!=SQLITE_FCNTL_LOCK_TIMEOUT && op!=SQLITE_FCNTL_CKPT_DONE && op!=SQLITE_FCNTL_CKPT_START ){ /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite ** is using a regular VFS, it is called after the corresponding ** transaction has been committed. Injecting a fault at this point ** confuses the test scripts - the COMMIT command returns SQLITE_NOMEM ** but the transaction is committed anyway. ** ** The core must call OsFileControl() though, not OsFileControlHint(), ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably ** means the commit really has failed and an error should be returned ** to the user. ** |
︙ | ︙ | |||
25790 25791 25792 25793 25794 25795 25796 | } /* ** Like free() but works for allocations obtained from sqlite3MemMalloc() ** or sqlite3MemRealloc(). ** ** For this low-level routine, we already know that pPrior!=0 since | | | 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 | } /* ** Like free() but works for allocations obtained from sqlite3MemMalloc() ** or sqlite3MemRealloc(). ** ** For this low-level routine, we already know that pPrior!=0 since ** cases where pPrior==0 will have been intercepted and dealt with ** by higher-level routines. */ static void sqlite3MemFree(void *pPrior){ #ifdef SQLITE_MALLOCSIZE SQLITE_FREE(pPrior); #else sqlite3_int64 *p = (sqlite3_int64*)pPrior; |
︙ | ︙ | |||
25878 25879 25880 25881 25882 25883 25884 | #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) int cpuCount; size_t len; if( _sqliteZone_ ){ return SQLITE_OK; } len = sizeof(cpuCount); | | | 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 | #if defined(__APPLE__) && !defined(SQLITE_WITHOUT_ZONEMALLOC) int cpuCount; size_t len; if( _sqliteZone_ ){ return SQLITE_OK; } len = sizeof(cpuCount); /* One usually wants to use hw.activecpu for MT decisions, but not here */ sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0); if( cpuCount>1 ){ /* defer MT decisions to system malloc */ _sqliteZone_ = malloc_default_zone(); }else{ /* only 1 core, use our own zone to contention over global locks, ** e.g. we have our own dedicated locks */ |
︙ | ︙ | |||
28345 28346 28347 28348 28349 28350 28351 | */ #ifdef SQLITE_MUTEX_PTHREADS #include <pthread.h> /* ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields | | | 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 | */ #ifdef SQLITE_MUTEX_PTHREADS #include <pthread.h> /* ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields ** are necessary under two conditions: (1) Debug builds and (2) using ** home-grown mutexes. Encapsulate these conditions into a single #define. */ #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX) # define SQLITE_MUTEX_NREF 1 #else # define SQLITE_MUTEX_NREF 0 #endif |
︙ | ︙ | |||
28846 28847 28848 28849 28850 28851 28852 | /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { CRITICAL_SECTION mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ #ifdef SQLITE_DEBUG | | | 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 | /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { CRITICAL_SECTION mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ #ifdef SQLITE_DEBUG volatile int nRef; /* Number of entrances */ volatile DWORD owner; /* Thread holding this mutex */ volatile LONG trace; /* True to trace changes */ #endif }; /* ** These are the initializer values used when declaring a "static" mutex |
︙ | ︙ | |||
30218 30219 30220 30221 30222 30223 30224 | /* Notes: ** ** %S Takes a pointer to SrcItem. Shows name or database.name ** %!S Like %S but prefer the zName over the zAlias */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 | /* Notes: ** ** %S Takes a pointer to SrcItem. Shows name or database.name ** %!S Like %S but prefer the zName over the zAlias */ /* ** Set the StrAccum object to an error mode. */ SQLITE_PRIVATE void sqlite3StrAccumSetError(StrAccum *p, u8 eError){ assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG ); p->accError = eError; if( p->mxAlloc ) sqlite3_str_reset(p); |
︙ | ︙ | |||
30360 30361 30362 30363 30364 30365 30366 | etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ etByte done; /* Loop termination flag */ etByte cThousand; /* Thousands separator for %d and %u */ etByte xtype = etINVALID; /* Conversion paradigm */ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ | | < < < | < < | | 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 | etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */ etByte done; /* Loop termination flag */ etByte cThousand; /* Thousands separator for %d and %u */ etByte xtype = etINVALID; /* Conversion paradigm */ u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ double realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char *zOut; /* Rendering buffer */ int nOut; /* Size of the rendering buffer */ char *zExtra = 0; /* Malloced memory used by some conversion */ int exp, e2; /* exponent of real numbers */ etByte flag_dp; /* True if decimal point should be shown */ etByte flag_rtz; /* True if trailing zeros should be removed */ PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ char buf[etBUFSIZE]; /* Conversion buffer */ /* pAccum never starts out with an empty buffer that was obtained from ** malloc(). This precondition is required by the mprintf("%z...") ** optimization. */ assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); |
︙ | ︙ | |||
30648 30649 30650 30651 30652 30653 30654 | pre = &aPrefix[infop->prefix]; for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; } length = (int)(&zOut[nOut-1]-bufpt); break; case etFLOAT: case etEXP: | | > > > > < < < > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > > > | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < | > < < < < < | | < < | < < < < | < > | 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 | pre = &aPrefix[infop->prefix]; for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; } length = (int)(&zOut[nOut-1]-bufpt); break; case etFLOAT: case etEXP: case etGENERIC: { FpDecode s; int iRound; int j; if( bArgList ){ realvalue = getDoubleArg(pArgList); }else{ realvalue = va_arg(ap,double); } if( precision<0 ) precision = 6; /* Set default precision */ #ifdef SQLITE_FP_PRECISION_LIMIT if( precision>SQLITE_FP_PRECISION_LIMIT ){ precision = SQLITE_FP_PRECISION_LIMIT; } #endif if( xtype==etFLOAT ){ iRound = -precision; }else if( xtype==etGENERIC ){ iRound = precision; }else{ iRound = precision+1; } sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16); if( s.isSpecial ){ if( s.isSpecial==2 ){ bufpt = flag_zeropad ? "null" : "NaN"; length = sqlite3Strlen30(bufpt); break; }else if( flag_zeropad ){ s.z[0] = '9'; s.iDP = 1000; s.n = 1; }else{ memcpy(buf, "-Inf", 5); bufpt = buf; if( s.sign=='-' ){ /* no-op */ }else if( flag_prefix ){ buf[0] = flag_prefix; }else{ bufpt++; } length = sqlite3Strlen30(bufpt); break; } } if( s.sign=='-' ){ prefix = '-'; }else{ prefix = flag_prefix; } exp = s.iDP-1; if( xtype==etGENERIC && precision>0 ) precision--; /* ** If the field type is etGENERIC, then convert to either etEXP ** or etFLOAT, as appropriate. */ if( xtype==etGENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = etEXP; }else{ precision = precision - exp; xtype = etFLOAT; } }else{ flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = s.iDP - 1; } bufpt = buf; { i64 szBufNeeded; /* Size of a temporary buffer needed */ szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15; if( cThousand && e2>0 ) szBufNeeded += (e2+2)/3; if( szBufNeeded > etBUFSIZE ){ bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded); if( bufpt==0 ) return; } } zOut = bufpt; flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2; /* The sign in front of the number */ if( prefix ){ *(bufpt++) = prefix; } /* Digits prior to the decimal point */ j = 0; if( e2<0 ){ *(bufpt++) = '0'; }else{ for(; e2>=0; e2--){ *(bufpt++) = j<s.n ? s.z[j++] : '0'; if( cThousand && (e2%3)==0 && e2>1 ) *(bufpt++) = ','; } } /* The decimal point */ if( flag_dp ){ *(bufpt++) = '.'; } /* "0" digits after the decimal point but before the first ** significant digit of the number */ for(e2++; e2<0 && precision>0; precision--, e2++){ *(bufpt++) = '0'; } /* Significant digits after the decimal point */ while( (precision--)>0 ){ *(bufpt++) = j<s.n ? s.z[j++] : '0'; } /* Remove trailing zeros and the "." if no digits follow the "." */ if( flag_rtz && flag_dp ){ while( bufpt[-1]=='0' ) *(--bufpt) = 0; assert( bufpt>zOut ); if( bufpt[-1]=='.' ){ if( flag_altform2 ){ *(bufpt++) = '0'; }else{ *(--bufpt) = 0; } } } /* Add the "eNNN" suffix */ if( xtype==etEXP ){ exp = s.iDP - 1; *(bufpt++) = aDigits[infop->charset]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; }else{ *(bufpt++) = '+'; } if( exp>=100 ){ |
︙ | ︙ | |||
30855 30856 30857 30858 30859 30860 30861 | for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } | < > | 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 | for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } break; } case etSIZE: if( !bArgList ){ *(va_arg(ap,int*)) = pAccum->nChar; } length = width = 0; break; case etPERCENT: |
︙ | ︙ | |||
31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 | SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3_str_vappendf(p, zFormat, ap); va_end(ap); } /************** End of printf.c **********************************************/ /************** Begin file treeview.c ****************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 | SQLITE_API void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){ va_list ap; va_start(ap,zFormat); sqlite3_str_vappendf(p, zFormat, ap); va_end(ap); } /***************************************************************************** ** Reference counted string storage *****************************************************************************/ /* ** Increase the reference count of the string by one. ** ** The input parameter is returned. */ SQLITE_PRIVATE char *sqlite3RCStrRef(char *z){ RCStr *p = (RCStr*)z; assert( p!=0 ); p--; p->nRCRef++; return z; } /* ** Decrease the reference count by one. Free the string when the ** reference count reaches zero. */ SQLITE_PRIVATE void sqlite3RCStrUnref(char *z){ RCStr *p = (RCStr*)z; assert( p!=0 ); p--; assert( p->nRCRef>0 ); if( p->nRCRef>=2 ){ p->nRCRef--; }else{ sqlite3_free(p); } } /* ** Create a new string that is capable of holding N bytes of text, not counting ** the zero byte at the end. The string is uninitialized. ** ** The reference count is initially 1. Call sqlite3RCStrUnref() to free the ** newly allocated string. ** ** This routine returns 0 on an OOM. */ SQLITE_PRIVATE char *sqlite3RCStrNew(u64 N){ RCStr *p = sqlite3_malloc64( N + sizeof(*p) + 1 ); if( p==0 ) return 0; p->nRCRef = 1; return (char*)&p[1]; } /* ** Change the size of the string so that it is able to hold N bytes. ** The string might be reallocated, so return the new allocation. */ SQLITE_PRIVATE char *sqlite3RCStrResize(char *z, u64 N){ RCStr *p = (RCStr*)z; RCStr *pNew; assert( p!=0 ); p--; assert( p->nRCRef==1 ); pNew = sqlite3_realloc64(p, N+sizeof(RCStr)+1); if( pNew==0 ){ sqlite3_free(p); return 0; }else{ return (char*)&pNew[1]; } } /************** End of printf.c **********************************************/ /************** Begin file treeview.c ****************************************/ /* ** 2015-06-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: |
︙ | ︙ | |||
32227 32228 32229 32230 32231 32232 32233 | case TK_TRUTH: { int x; const char *azOp[] = { "IS-FALSE", "IS-TRUE", "IS-NOT-FALSE", "IS-NOT-TRUE" }; assert( pExpr->op2==TK_IS || pExpr->op2==TK_ISNOT ); assert( pExpr->pRight ); | | > | 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 | case TK_TRUTH: { int x; const char *azOp[] = { "IS-FALSE", "IS-TRUE", "IS-NOT-FALSE", "IS-NOT-TRUE" }; assert( pExpr->op2==TK_IS || pExpr->op2==TK_ISNOT ); assert( pExpr->pRight ); assert( sqlite3ExprSkipCollateAndLikely(pExpr->pRight)->op == TK_TRUEFALSE ); x = (pExpr->op2==TK_ISNOT)*2 + sqlite3ExprTruthValue(pExpr->pRight); zUniOp = azOp[x]; break; } case TK_SPAN: { assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
︙ | ︙ | |||
33886 33887 33888 33889 33890 33891 33892 | #ifndef SQLITE_OMIT_FLOATING_POINT #include <math.h> #endif /* ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, ** or to bypass normal error detection during testing in order to let | | | 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 | #ifndef SQLITE_OMIT_FLOATING_POINT #include <math.h> #endif /* ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, ** or to bypass normal error detection during testing in order to let ** execute proceed further downstream. ** ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The ** sqlite3FaultSim() function only returns non-zero during testing. ** ** During testing, if the test harness has set a fault-sim callback using ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then ** each call to sqlite3FaultSim() is relayed to that application-supplied |
︙ | ︙ | |||
34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 | /* ** Load the sqlite3.iSysErrno field if that is an appropriate thing ** to do based on the SQLite error code in rc. */ SQLITE_PRIVATE void sqlite3SystemError(sqlite3 *db, int rc){ if( rc==SQLITE_IOERR_NOMEM ) return; rc &= 0xff; if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ db->iSysErrno = sqlite3OsGetLastError(db->pVfs); } } /* | > > > > > > > > > > > > > > > > > | 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 | /* ** Load the sqlite3.iSysErrno field if that is an appropriate thing ** to do based on the SQLite error code in rc. */ SQLITE_PRIVATE void sqlite3SystemError(sqlite3 *db, int rc){ if( rc==SQLITE_IOERR_NOMEM ) return; #ifdef SQLITE_USE_SEH if( rc==SQLITE_IOERR_IN_PAGE ){ int ii; int iErr; sqlite3BtreeEnterAll(db); for(ii=0; ii<db->nDb; ii++){ if( db->aDb[ii].pBt ){ iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt)); if( iErr ){ db->iSysErrno = iErr; } } } sqlite3BtreeLeaveAll(db); return; } #endif rc &= 0xff; if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ db->iSysErrno = sqlite3OsGetLastError(db->pVfs); } } /* |
︙ | ︙ | |||
34248 34249 34250 34251 34252 34253 34254 | while( z[0] ){ h += UpperToLower[(unsigned char)z[0]]; z++; } return h; } | | < < > > | | < > | | | | | | < > | | | < > | | | | > | < | < | > | < > | | | | < < < | 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 | while( z[0] ){ h += UpperToLower[(unsigned char)z[0]]; z++; } return h; } /* Double-Double multiplication. (x[0],x[1]) *= (y,yy) ** ** Reference: ** T. J. Dekker, "A Floating-Point Technique for Extending the ** Available Precision". 1971-07-26. */ static void dekkerMul2(volatile double *x, double y, double yy){ /* ** The "volatile" keywords on parameter x[] and on local variables ** below are needed force intermediate results to be truncated to ** binary64 rather than be carried around in an extended-precision ** format. The truncation is necessary for the Dekker algorithm to ** work. Intel x86 floating point might omit the truncation without ** the use of volatile. */ volatile double tx, ty, p, q, c, cc; double hx, hy; u64 m; memcpy(&m, (void*)&x[0], 8); m &= 0xfffffffffc000000LL; memcpy(&hx, &m, 8); tx = x[0] - hx; memcpy(&m, &y, 8); m &= 0xfffffffffc000000LL; memcpy(&hy, &m, 8); ty = y - hy; p = hx*hy; q = hx*ty + tx*hy; c = p+q; cc = p - c + q + tx*ty; cc = x[0]*yy + x[1]*y + cc; x[0] = c + cc; x[1] = c - x[0]; x[1] += cc; } /* ** The string z[] is an text representation of a real number. ** Convert this string to a double and write it into *pResult. ** ** The string z[] is length bytes in length (bytes, not characters) and |
︙ | ︙ | |||
34325 34326 34327 34328 34329 34330 34331 | #endif SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr; const char *zEnd; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ | | < | 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 | #endif SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ #ifndef SQLITE_OMIT_FLOATING_POINT int incr; const char *zEnd; /* sign * significand * (10 ^ (esign * exponent)) */ int sign = 1; /* sign of significand */ u64 s = 0; /* significand */ int d = 0; /* adjust exponent for shifting decimal point */ int esign = 1; /* sign of exponent */ int e = 0; /* exponent */ int eValid = 1; /* True exponent is either not used or is well-formed */ int nDigit = 0; /* Number of digits processed */ int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); *pResult = 0.0; /* Default return value, in case of an error */ if( length==0 ) return 0; |
︙ | ︙ | |||
34370 34371 34372 34373 34374 34375 34376 | z+=incr; } /* copy max significant digits to significand */ while( z<zEnd && sqlite3Isdigit(*z) ){ s = s*10 + (*z - '0'); z+=incr; nDigit++; | | | | 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 | z+=incr; } /* copy max significant digits to significand */ while( z<zEnd && sqlite3Isdigit(*z) ){ s = s*10 + (*z - '0'); z+=incr; nDigit++; if( s>=((LARGEST_UINT64-9)/10) ){ /* skip non-significant significand digits ** (increase exponent by d to shift decimal left) */ while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } } } if( z>=zEnd ) goto do_atof_calc; /* if decimal point is present */ if( *z=='.' ){ z+=incr; eType++; /* copy digits from after decimal to significand ** (decrease exponent by d to shift decimal right) */ while( z<zEnd && sqlite3Isdigit(*z) ){ if( s<((LARGEST_UINT64-9)/10) ){ s = s*10 + (*z - '0'); d--; nDigit++; } z+=incr; } } |
︙ | ︙ | |||
34425 34426 34427 34428 34429 34430 34431 34432 34433 | } } /* skip trailing spaces */ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; do_atof_calc: /* adjust exponent by d, and update sign */ e = (e*esign) + d; | > > > > > > < < < < < | | < < < < < < < < < < | < < | | < > > | > > | < < < < < < | | | < < < | | < | > > | < | > > | | | < < | | | > | | | > > > > | > > > > > | > > > > > > | > | > | > > > > > > | | > > | | | > | | 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 | } } /* skip trailing spaces */ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; do_atof_calc: /* Zero is a special case */ if( s==0 ){ *pResult = sign<0 ? -0.0 : +0.0; goto atof_return; } /* adjust exponent by d, and update sign */ e = (e*esign) + d; /* Try to adjust the exponent to make it smaller */ while( e>0 && s<(LARGEST_UINT64/10) ){ s *= 10; e--; } while( e<0 && (s%10)==0 ){ s /= 10; e++; } if( e==0 ){ *pResult = s; }else if( sqlite3Config.bUseLongDouble ){ LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s; if( e>0 ){ while( e>=100 ){ e-=100; r *= 1.0e+100L; } while( e>=10 ){ e-=10; r *= 1.0e+10L; } while( e>=1 ){ e-=1; r *= 1.0e+01L; } }else{ while( e<=-100 ){ e+=100; r *= 1.0e-100L; } while( e<=-10 ){ e+=10; r *= 1.0e-10L; } while( e<=-1 ){ e+=1; r *= 1.0e-01L; } } assert( r>=0.0 ); if( r>+1.7976931348623157081452742373e+308L ){ #ifdef INFINITY *pResult = +INFINITY; #else *pResult = 1.0e308*10.0; #endif }else{ *pResult = (double)r; } }else{ double rr[2]; u64 s2; rr[0] = (double)s; s2 = (u64)rr[0]; rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s); if( e>0 ){ while( e>=100 ){ e -= 100; dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83); } while( e>=10 ){ e -= 10; dekkerMul2(rr, 1.0e+10, 0.0); } while( e>=1 ){ e -= 1; dekkerMul2(rr, 1.0e+01, 0.0); } }else{ while( e<=-100 ){ e += 100; dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117); } while( e<=-10 ){ e += 10; dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27); } while( e<=-1 ){ e += 1; dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18); } } *pResult = rr[0]+rr[1]; if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300; } if( sign<0 ) *pResult = -*pResult; assert( !sqlite3IsNaN(*pResult) ); atof_return: /* return true if number and no extra non-whitespace characters after */ if( z==zEnd && nDigit>0 && eValid && eType>0 ){ return eType; }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ return -1; }else{ return 0; } |
︙ | ︙ | |||
34633 34634 34635 34636 34637 34638 34639 | testcase( i==18*incr ); testcase( i==19*incr ); testcase( i==20*incr ); if( u>LARGEST_INT64 ){ /* This test and assignment is needed only to suppress UB warnings ** from clang and -fsanitize=undefined. This test and assignment make ** the code a little larger and slower, and no harm comes from omitting | | | 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 | testcase( i==18*incr ); testcase( i==19*incr ); testcase( i==20*incr ); if( u>LARGEST_INT64 ){ /* This test and assignment is needed only to suppress UB warnings ** from clang and -fsanitize=undefined. This test and assignment make ** the code a little larger and slower, and no harm comes from omitting ** them, but we must appease the undefined-behavior pharisees. */ *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; }else if( neg ){ *pNum = -(i64)u; }else{ *pNum = (i64)u; } rc = 0; |
︙ | ︙ | |||
34711 34712 34713 34714 34715 34716 34717 | memcpy(pOut, &u, 8); if( k-i>16 ) return 2; if( z[k]!=0 ) return 1; return 0; }else #endif /* SQLITE_OMIT_HEX_INTEGER */ { | > > | | 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 | memcpy(pOut, &u, 8); if( k-i>16 ) return 2; if( z[k]!=0 ) return 1; return 0; }else #endif /* SQLITE_OMIT_HEX_INTEGER */ { int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789")); if( z[n] ) n++; return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8); } } /* ** If zNum represents an integer that will fit in 32-bits, then set ** *pValue to that integer and return true. Otherwise return false. ** |
︙ | ︙ | |||
34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 | ** string is not an integer, just return 0. */ SQLITE_PRIVATE int sqlite3Atoi(const char *z){ int x = 0; sqlite3GetInt32(z, &x); return x; } /* ** Try to convert z into an unsigned 32-bit integer. Return true on ** success and false if there is an error. ** ** Only decimal notation is accepted. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 | ** string is not an integer, just return 0. */ SQLITE_PRIVATE int sqlite3Atoi(const char *z){ int x = 0; sqlite3GetInt32(z, &x); return x; } /* ** Decode a floating-point value into an approximate decimal ** representation. ** ** Round the decimal representation to n significant digits if ** n is positive. Or round to -n signficant digits after the ** decimal point if n is negative. No rounding is performed if ** n is zero. ** ** The significant digits of the decimal representation are ** stored in p->z[] which is a often (but not always) a pointer ** into the middle of p->zBuf[]. There are p->n significant digits. ** The p->z[] array is *not* zero-terminated. */ SQLITE_PRIVATE void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){ int i; u64 v; int e, exp = 0; p->isSpecial = 0; p->z = p->zBuf; /* Convert negative numbers to positive. Deal with Infinity, 0.0, and ** NaN. */ if( r<0.0 ){ p->sign = '-'; r = -r; }else if( r==0.0 ){ p->sign = '+'; p->n = 1; p->iDP = 1; p->z = "0"; return; }else{ p->sign = '+'; } memcpy(&v,&r,8); e = v>>52; if( (e&0x7ff)==0x7ff ){ p->isSpecial = 1 + (v!=0x7ff0000000000000LL); p->n = 0; p->iDP = 0; return; } /* Multiply r by powers of ten until it lands somewhere in between ** 1.0e+19 and 1.0e+17. */ if( sqlite3Config.bUseLongDouble ){ LONGDOUBLE_TYPE rr = r; if( rr>=1.0e+19 ){ while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; } while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; } while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; } }else{ while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; } while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; } while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; } } v = (u64)rr; }else{ /* If high-precision floating point is not available using "long double", ** then use Dekker-style double-double computation to increase the ** precision. ** ** The error terms on constants like 1.0e+100 computed using the ** decimal extension, for example as follows: ** ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100))); */ double rr[2]; rr[0] = r; rr[1] = 0.0; if( rr[0]>1.84e+19 ){ while( rr[0]>1.84e+119 ){ exp += 100; dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117); } while( rr[0]>1.84e+29 ){ exp += 10; dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27); } while( rr[0]>1.84e+19 ){ exp += 1; dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18); } }else{ while( rr[0]<1.84e-82 ){ exp -= 100; dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83); } while( rr[0]<1.84e+08 ){ exp -= 10; dekkerMul2(rr, 1.0e+10, 0.0); } while( rr[0]<1.84e+18 ){ exp -= 1; dekkerMul2(rr, 1.0e+01, 0.0); } } v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1]; } /* Extract significant digits. */ i = sizeof(p->zBuf)-1; assert( v>0 ); while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; } assert( i>=0 && i<sizeof(p->zBuf)-1 ); p->n = sizeof(p->zBuf) - 1 - i; assert( p->n>0 ); assert( p->n<sizeof(p->zBuf) ); p->iDP = p->n + exp; if( iRound<0 ){ iRound = p->iDP - iRound; if( iRound==0 && p->zBuf[i+1]>='5' ){ iRound = 1; p->zBuf[i--] = '0'; p->n++; p->iDP++; } } if( iRound>0 && (iRound<p->n || p->n>mxRound) ){ char *z = &p->zBuf[i+1]; if( iRound>mxRound ) iRound = mxRound; p->n = iRound; if( z[iRound]>='5' ){ int j = iRound-1; while( 1 /*exit-by-break*/ ){ z[j]++; if( z[j]<='9' ) break; z[j] = '0'; if( j==0 ){ p->z[i--] = '1'; p->n++; p->iDP++; break; }else{ j--; } } } } p->z = &p->zBuf[i+1]; assert( i+p->n < sizeof(p->zBuf) ); while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; } } /* ** Try to convert z into an unsigned 32-bit integer. Return true on ** success and false if there is an error. ** ** Only decimal notation is accepted. */ |
︙ | ︙ | |||
35318 35319 35320 35321 35322 35323 35324 | return 0; }else{ return 1; } } /* | | | 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 | return 0; }else{ return 1; } } /* ** Attempt to add, subtract, or multiply the 64-bit signed value iB against ** the other 64-bit signed integer at *pA and store the result in *pA. ** Return 0 on success. Or if the operation would have resulted in an ** overflow, leave *pA unchanged and return 1. */ SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){ #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) return __builtin_add_overflow(*pA, iB, pA); |
︙ | ︙ | |||
35631 35632 35633 35634 35635 35636 35637 | ** This file contains inline asm code for retrieving "high-performance" ** counters for x86 and x86_64 class CPUs. */ #ifndef SQLITE_HWTIME_H #define SQLITE_HWTIME_H /* | | | 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 | ** This file contains inline asm code for retrieving "high-performance" ** counters for x86 and x86_64 class CPUs. */ #ifndef SQLITE_HWTIME_H #define SQLITE_HWTIME_H /* ** The following routine only works on Pentium-class (or newer) processors. ** It uses the RDTSC opcode to read the cycle count value out of the ** processor and returns that value. This can be used for high-res ** profiling. */ #if !defined(__STRICT_ANSI__) && \ (defined(__GNUC__) || defined(_MSC_VER)) && \ (defined(i386) || defined(__i386__) || defined(_M_IX86)) |
︙ | ︙ | |||
35803 35804 35805 35806 35807 35808 35809 | if( pH->first ){ pH->first->prev = pNew; } pNew->prev = 0; pH->first = pNew; } } | | | 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 | if( pH->first ){ pH->first->prev = pNew; } pNew->prev = 0; pH->first = pNew; } } /* Resize the hash table so that it contains "new_size" buckets. ** ** The hash table might fail to resize if sqlite3_malloc() fails or ** if the new size is the same as the prior size. ** Return TRUE if the resize occurs and false if not. */ static int rehash(Hash *pH, unsigned int new_size){ struct _ht *new_ht; /* The new hash table */ |
︙ | ︙ | |||
37189 37190 37191 37192 37193 37194 37195 | ** implementation uses Posix Advisory Locks. Alternative implementations ** use flock(), dot-files, various proprietary locking schemas, or simply ** skip locking all together. ** ** This source file is organized into divisions where the logic for various ** subfunctions is contained within the appropriate division. PLEASE ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed | | | 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 | ** implementation uses Posix Advisory Locks. Alternative implementations ** use flock(), dot-files, various proprietary locking schemas, or simply ** skip locking all together. ** ** This source file is organized into divisions where the logic for various ** subfunctions is contained within the appropriate division. PLEASE ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed ** in the correct division and should be clearly labelled. ** ** The layout of divisions is as follows: ** ** * General-purpose declarations and utility functions. ** * Unique file ID logic used by VxWorks. ** * Various locking primitive implementations (all except proxy locking): ** + for Posix Advisory Locks |
︙ | ︙ | |||
37776 37777 37778 37779 37780 37781 37782 | #else return 0; #endif } /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the | | | 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 | #else return 0; #endif } /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "unix" VFSes. Return SQLITE_OK upon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int unixSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ |
︙ | ︙ | |||
38298 38299 38300 38301 38302 38303 38304 | ** a locked and an unlocked state. ** ** But wait: there are yet more problems with POSIX advisory locks. ** ** If you close a file descriptor that points to a file that has locks, ** all locks on that file that are owned by the current process are ** released. To work around this problem, each unixInodeInfo object | | | | 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 | ** a locked and an unlocked state. ** ** But wait: there are yet more problems with POSIX advisory locks. ** ** If you close a file descriptor that points to a file that has locks, ** all locks on that file that are owned by the current process are ** released. To work around this problem, each unixInodeInfo object ** maintains a count of the number of pending locks on the inode. ** When an attempt is made to close an unixFile, if there are ** other unixFile open on the same inode that are holding locks, the call ** to close() the file descriptor is deferred until all of the locks clear. ** The unixInodeInfo structure keeps a list of file descriptors that need to ** be closed and that list is walked (and cleared) when the last lock ** clears. ** ** Yet another problem: LinuxThreads do not play well with posix locks. ** ** Many older versions of linux use the LinuxThreads library which is ** not posix compliant. Under LinuxThreads, a lock created by thread ** A cannot be modified or overridden by a different thread B. ** Only thread A can modify the lock. Locking behavior is correct ** if the application uses the newer Native Posix Thread Library (NPTL) ** on linux - with NPTL a lock created by thread A can override locks ** in thread B. But there is no way to know at compile-time which ** threading library is being used. So there is no way to know at ** compile-time whether or not thread A can override locks on thread B. ** One has to do a run-time check to discover the behavior of the ** current process. ** |
︙ | ︙ | |||
38514 38515 38516 38517 38518 38519 38520 | ** a convenient place to set a breakpoint. */ static void storeLastErrno(unixFile *pFile, int error){ pFile->lastErrno = error; } /* | | | 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 | ** a convenient place to set a breakpoint. */ static void storeLastErrno(unixFile *pFile, int error){ pFile->lastErrno = error; } /* ** Close all file descriptors accumulated in the unixInodeInfo->pUnused list. */ static void closePendingFds(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; UnixUnusedFd *p; UnixUnusedFd *pNext; assert( unixFileMutexHeld(pFile) ); for(p=pInode->pUnused; p; p=pNext){ |
︙ | ︙ | |||
38877 38878 38879 38880 38881 38882 38883 | /* The following describes the implementation of the various locks and ** lock transitions in terms of the POSIX advisory shared and exclusive ** lock primitives (called read-locks and write-locks below, to avoid ** confusion with SQLite lock names). The algorithms are complicated ** slightly in order to be compatible with Windows95 systems simultaneously ** accessing the same database file, in case that is ever required. ** | | | | | 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 | /* The following describes the implementation of the various locks and ** lock transitions in terms of the POSIX advisory shared and exclusive ** lock primitives (called read-locks and write-locks below, to avoid ** confusion with SQLite lock names). The algorithms are complicated ** slightly in order to be compatible with Windows95 systems simultaneously ** accessing the same database file, in case that is ever required. ** ** Symbols defined in os.h identify the 'pending byte' and the 'reserved ** byte', each single bytes at well known offsets, and the 'shared byte ** range', a range of 510 bytes at a well known offset. ** ** To obtain a SHARED lock, a read-lock is obtained on the 'pending ** byte'. If this is successful, 'shared byte range' is read-locked ** and the lock on the 'pending byte' released. (Legacy note: When ** SQLite was first developed, Windows95 systems were still very common, ** and Windows95 lacks a shared-lock capability. So on Windows95, a ** single randomly selected by from the 'shared byte range' is locked. ** Windows95 is now pretty much extinct, but this work-around for the ** lack of shared-locks on Windows95 lives on, for backwards ** compatibility.) ** ** A process may only obtain a RESERVED lock after it has a SHARED lock. ** A RESERVED lock is implemented by grabbing a write-lock on the ** 'reserved byte'. ** ** An EXCLUSIVE lock may only be requested after either a SHARED or ** RESERVED lock is held. An EXCLUSIVE lock is implemented by obtaining ** a write-lock on the entire 'shared byte range'. Since all other locks ** require a read-lock on one of the bytes within this range, this ensures ** that no other locks are held on the database. ** ** If a process that holds a RESERVED lock requests an EXCLUSIVE, then ** a PENDING lock is obtained first. A PENDING lock is implemented by ** obtaining a write-lock on the 'pending byte'. This ensures that no new ** SHARED locks can be obtained, but existing SHARED locks are allowed to ** persist. If the call to this function fails to obtain the EXCLUSIVE ** lock in this case, it holds the PENDING lock instead. The client may ** then re-attempt the EXCLUSIVE lock later on, after existing SHARED ** locks have cleared. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode; struct flock lock; |
︙ | ︙ | |||
38934 38935 38936 38937 38938 38939 38940 | OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct. ** (1) We never move from unlocked to anything higher than shared lock. | | | 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 | OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct. ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pending lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); assert( eFileLock!=PENDING_LOCK ); assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); /* This mutex is needed because pFile->pInode is shared across threads |
︙ | ︙ | |||
40152 40153 40154 40155 40156 40157 40158 | OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct ** (1) We never move from unlocked to anything higher than shared lock. | | | 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 | OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, azFileLock(eFileLock))); return SQLITE_OK; } /* Make sure the locking sequence is correct ** (1) We never move from unlocked to anything higher than shared lock. ** (2) SQLite never explicitly requests a pending lock. ** (3) A shared lock is always held when a reserve lock is requested. */ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); assert( eFileLock!=PENDING_LOCK ); assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); /* This mutex is needed because pFile->pInode is shared across threads |
︙ | ︙ | |||
40268 40269 40270 40271 40272 40273 40274 | /* Remove the shared lock before trying the range. we'll need to ** reestablish the shared lock if we can't get the afpUnlock */ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 0)) ){ int failed2 = SQLITE_OK; | | | 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 | /* Remove the shared lock before trying the range. we'll need to ** reestablish the shared lock if we can't get the afpUnlock */ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 0)) ){ int failed2 = SQLITE_OK; /* now attempt to get the exclusive lock range */ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 1); if( failed && (failed2 = afpSetLock(context->dbPath, pFile, SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ /* Can't reestablish the shared lock. Sqlite can't deal, this is ** a critical I/O error */ |
︙ | ︙ | |||
40563 40564 40565 40566 40567 40568 40569 | assert( pFile->pPreallocatedUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #endif #if SQLITE_MAX_MMAP_SIZE>0 | | | 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 | assert( pFile->pPreallocatedUnused==0 || offset>=PENDING_BYTE+512 || offset+amt<=PENDING_BYTE ); #endif #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offset<pFile->mmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); return SQLITE_OK; }else{ int nCopy = pFile->mmapSize - offset; |
︙ | ︙ | |||
40715 40716 40717 40718 40719 40720 40721 | pFile->transCntrChng = 1; /* The transaction counter has changed */ } } } #endif #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 | | | 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 | pFile->transCntrChng = 1; /* The transaction counter has changed */ } } } #endif #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offset<pFile->mmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); return SQLITE_OK; }else{ int nCopy = pFile->mmapSize - offset; |
︙ | ︙ | |||
40837 40838 40839 40840 40841 40842 40843 | if( fullSync ) sqlite3_fullsync_count++; sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op. But go ahead and call fstat() to validate the file ** descriptor as we need a method to provoke a failure during | | | 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 | if( fullSync ) sqlite3_fullsync_count++; sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op. But go ahead and call fstat() to validate the file ** descriptor as we need a method to provoke a failure during ** coverage testing. */ #ifdef SQLITE_NO_SYNC { struct stat buf; rc = osFstat(fd, &buf); } #elif HAVE_FULLFSYNC |
︙ | ︙ | |||
43882 43883 43884 43885 43886 43887 43888 | ** The argument is the number of microseconds we want to sleep. ** The return value is the number of microseconds of sleep actually ** requested from the underlying operating system, a number which ** might be greater than or equal to the argument, but not less ** than the argument. */ static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ | | < > > > > > > | 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 | ** The argument is the number of microseconds we want to sleep. ** The return value is the number of microseconds of sleep actually ** requested from the underlying operating system, a number which ** might be greater than or equal to the argument, but not less ** than the argument. */ static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ #if !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP+0 struct timespec sp; sp.tv_sec = microseconds / 1000000; sp.tv_nsec = (microseconds % 1000000) * 1000; /* Almost all modern unix systems support nanosleep(). But if you are ** compiling for one of the rare exceptions, you can use ** -DHAVE_NANOSLEEP=0 (perhaps in conjuction with -DHAVE_USLEEP if ** usleep() is available) in order to bypass the use of nanosleep() */ nanosleep(&sp, NULL); UNUSED_PARAMETER(NotUsed); return microseconds; #elif defined(HAVE_USLEEP) && HAVE_USLEEP if( microseconds>=1000000 ) sleep(microseconds/1000000); if( microseconds%1000000 ) usleep(microseconds%1000000); UNUSED_PARAMETER(NotUsed); return microseconds; |
︙ | ︙ | |||
46477 46478 46479 46480 46481 46482 46483 | #define osFlushViewOfFile \ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the | | | 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 | #define osFlushViewOfFile \ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK upon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. */ static int winSetSystemCall( sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ const char *zName, /* Name of system call to override */ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ |
︙ | ︙ | |||
48057 48058 48059 48060 48061 48062 48063 | assert( offset>=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if SQLITE_MAX_MMAP_SIZE>0 | | | 48529 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 | assert( offset>=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offset<pFile->mmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; |
︙ | ︙ | |||
48135 48136 48137 48138 48139 48140 48141 | SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 | | | 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 | SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transferring ** data from the memory mapping using memcpy(). */ if( offset<pFile->mmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; |
︙ | ︙ | |||
48245 48246 48247 48248 48249 48250 48251 | ** though some folks might complain that the file is bigger than it ** needs to be. ** ** The only feasible work-around is to defer the truncation until after ** all references to memory-mapped content are closed. That is doable, ** but involves adding a few branches in the common write code path which ** could slow down normal operations slightly. Hence, we have decided for | | | 48717 48718 48719 48720 48721 48722 48723 48724 48725 48726 48727 48728 48729 48730 48731 | ** though some folks might complain that the file is bigger than it ** needs to be. ** ** The only feasible work-around is to defer the truncation until after ** all references to memory-mapped content are closed. That is doable, ** but involves adding a few branches in the common write code path which ** could slow down normal operations slightly. Hence, we have decided for ** now to simply make transactions a no-op if there are pending reads. We ** can maybe revisit this decision in the future. */ return SQLITE_OK; } #endif assert( pFile ); |
︙ | ︙ | |||
48304 48305 48306 48307 48308 48309 48310 | osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc))); return rc; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test | | | 48776 48777 48778 48779 48780 48781 48782 48783 48784 48785 48786 48787 48788 48789 48790 | osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc))); return rc; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occurring at the right times. */ SQLITE_API int sqlite3_sync_count = 0; SQLITE_API int sqlite3_fullsync_count = 0; #endif /* ** Make sure all writes to a particular file are committed to disk. |
︙ | ︙ | |||
48661 48662 48663 48664 48665 48666 48667 | gotPendingLock = 0; } /* Acquire an EXCLUSIVE lock */ if( locktype==EXCLUSIVE_LOCK && res ){ assert( pFile->locktype>=SHARED_LOCK ); | | | 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 | gotPendingLock = 0; } /* Acquire an EXCLUSIVE lock */ if( locktype==EXCLUSIVE_LOCK && res ){ assert( pFile->locktype>=SHARED_LOCK ); (void)winUnlockReadLock(pFile); res = winLockFile(&pFile->h, SQLITE_LOCKFILE_FLAGS, SHARED_FIRST, 0, SHARED_SIZE, 0); if( res ){ newLocktype = EXCLUSIVE_LOCK; }else{ lastErrno = osGetLastError(); winGetReadLock(pFile); |
︙ | ︙ | |||
50065 50066 50067 50068 50069 50070 50071 50072 50073 50074 50075 50076 50077 50078 | */ static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){ static char zChars[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789"; size_t i, j; int nPre = sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX); int nMax, nBuf, nDir, nLen; char *zBuf; /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. | > | 50537 50538 50539 50540 50541 50542 50543 50544 50545 50546 50547 50548 50549 50550 50551 | */ static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){ static char zChars[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789"; size_t i, j; DWORD pid; int nPre = sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX); int nMax, nBuf, nDir, nLen; char *zBuf; /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. |
︙ | ︙ | |||
50277 50278 50279 50280 50281 50282 50283 50284 50285 50286 50287 50288 50289 50290 50291 | return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0); } sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX); j = sqlite3Strlen30(zBuf); sqlite3_randomness(15, &zBuf[j]); for(i=0; i<15; i++, j++){ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; zBuf[j+1] = 0; *pzBuf = zBuf; OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf)); | > > > | 50750 50751 50752 50753 50754 50755 50756 50757 50758 50759 50760 50761 50762 50763 50764 50765 50766 50767 | return winLogError(SQLITE_ERROR, 0, "winGetTempname5", 0); } sqlite3_snprintf(nBuf-16-nLen, zBuf+nLen, SQLITE_TEMP_FILE_PREFIX); j = sqlite3Strlen30(zBuf); sqlite3_randomness(15, &zBuf[j]); pid = osGetCurrentProcessId(); for(i=0; i<15; i++, j++){ zBuf[j] += pid & 0xff; pid >>= 8; zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; } zBuf[j] = 0; zBuf[j+1] = 0; *pzBuf = zBuf; OSTRACE(("TEMP-FILENAME name=%s, rc=SQLITE_OK\n", zBuf)); |
︙ | ︙ | |||
52642 52643 52644 52645 52646 52647 52648 | if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); return SQLITE_OK; } h = BITVEC_HASH(i++); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ | | | 53118 53119 53120 53121 53122 53123 53124 53125 53126 53127 53128 53129 53130 53131 53132 | if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); return SQLITE_OK; } h = BITVEC_HASH(i++); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ /* worrying about sub-dividing and re-hashing. */ if( !p->u.aHash[h] ){ if (p->nSet<(BITVEC_NINT-1)) { goto bitvec_set_end; } else { goto bitvec_set_rehash; } } |
︙ | ︙ | |||
53139 53140 53141 53142 53143 53144 53145 | static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the ** suggested cache size is set to N. */ return p->szCache; }else{ i64 n; | | | 53615 53616 53617 53618 53619 53620 53621 53622 53623 53624 53625 53626 53627 53628 53629 | static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the ** suggested cache size is set to N. */ return p->szCache; }else{ i64 n; /* IMPLEMENTATION-OF: R-59858-46238 If the argument N is negative, then the ** number of cache pages is adjusted to be a number of pages that would ** use approximately abs(N*1024) bytes of memory based on the current ** page size. */ n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); if( n>1000000000 ) n = 1000000000; return (int)n; } |
︙ | ︙ | |||
53627 53628 53629 53630 53631 53632 53633 | } } } return result.pDirty; } /* | | | 54103 54104 54105 54106 54107 54108 54109 54110 54111 54112 54113 54114 54115 54116 54117 | } } } return result.pDirty; } /* ** Sort the list of pages in ascending order by pgno. Pages are ** connected by pDirty pointers. The pDirtyPrev pointers are ** corrupted by this sort. ** ** Since there cannot be more than 2^31 distinct pages in a database, ** there cannot be more than 31 buckets required by the merge sorter. ** One extra bucket is added to catch overflow in case something ** ever changes to make the previous sentence incorrect. |
︙ | ︙ | |||
53867 53868 53869 53870 53871 53872 53873 | ** bulk allocation can be adjusted using ** ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). ** ** If N is positive, then N pages worth of memory are allocated using a single ** sqlite3Malloc() call and that memory is used for the first N pages allocated. ** Or if N is negative, then -1024*N bytes of memory are allocated and used | | | 54343 54344 54345 54346 54347 54348 54349 54350 54351 54352 54353 54354 54355 54356 54357 | ** bulk allocation can be adjusted using ** ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). ** ** If N is positive, then N pages worth of memory are allocated using a single ** sqlite3Malloc() call and that memory is used for the first N pages allocated. ** Or if N is negative, then -1024*N bytes of memory are allocated and used ** for as many pages as can be accommodated. ** ** Only one of (2) or (3) can be used. Once the memory available to (2) or ** (3) is exhausted, subsequent allocations fail over to the general-purpose ** memory allocator (1). ** ** Earlier versions of SQLite used only methods (1) and (2). But experiments ** show that method (3) with N==100 provides about a 5% performance boost for |
︙ | ︙ | |||
53901 53902 53903 53904 53905 53906 53907 | ** ** Variables isBulkLocal and isAnchor were once type "u8". That works, ** but causes a 2-byte gap in the structure for most architectures (since ** pointers must be either 4 or 8-byte aligned). As this structure is located ** in memory directly after the associated page data, if the database is ** corrupt, code at the b-tree layer may overread the page buffer and ** read part of this structure before the corruption is detected. This | | | 54377 54378 54379 54380 54381 54382 54383 54384 54385 54386 54387 54388 54389 54390 54391 | ** ** Variables isBulkLocal and isAnchor were once type "u8". That works, ** but causes a 2-byte gap in the structure for most architectures (since ** pointers must be either 4 or 8-byte aligned). As this structure is located ** in memory directly after the associated page data, if the database is ** corrupt, code at the b-tree layer may overread the page buffer and ** read part of this structure before the corruption is detected. This ** can cause a valgrind error if the uninitialized gap is accessed. Using u16 ** ensures there is no such gap, and therefore no bytes of uninitialized ** memory in the structure. ** ** The pLruNext and pLruPrev pointers form a double-linked circular list ** of all pages that are unpinned. The PGroup.lru element (which should be ** the only element on the list with PgHdr1.isAnchor set to 1) forms the ** beginning and the end of the list. |
︙ | ︙ | |||
55121 55122 55123 55124 55125 55126 55127 | ** allocated in chunks so most INSERTs do no allocation. There is an ** upper bound on the size of allocated memory. No memory is freed ** until DESTROY. ** ** The TEST primitive includes a "batch" number. The TEST primitive ** will only see elements that were inserted before the last change ** in the batch number. In other words, if an INSERT occurs between | | | 55597 55598 55599 55600 55601 55602 55603 55604 55605 55606 55607 55608 55609 55610 55611 | ** allocated in chunks so most INSERTs do no allocation. There is an ** upper bound on the size of allocated memory. No memory is freed ** until DESTROY. ** ** The TEST primitive includes a "batch" number. The TEST primitive ** will only see elements that were inserted before the last change ** in the batch number. In other words, if an INSERT occurs between ** two TESTs where the TESTs have the same batch number, then the ** value added by the INSERT will not be visible to the second TEST. ** The initial batch number is zero, so if the very first TEST contains ** a non-zero batch number, it will see all prior INSERTs. ** ** No INSERTs may occurs after a SMALLEST. An assertion will fail if ** that is attempted. ** |
︙ | ︙ | |||
55758 55759 55760 55761 55762 55763 55764 55765 55766 55767 55768 55769 55770 55771 | /* Return the sqlite3_file object for the WAL file */ SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock); SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db); #endif #endif /* ifndef SQLITE_OMIT_WAL */ #endif /* SQLITE_WAL_H */ /************** End of wal.h *************************************************/ /************** Continuing where we left off in pager.c **********************/ | > > > > | 56234 56235 56236 56237 56238 56239 56240 56241 56242 56243 56244 56245 56246 56247 56248 56249 56250 56251 | /* Return the sqlite3_file object for the WAL file */ SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT SQLITE_PRIVATE int sqlite3WalWriteLock(Wal *pWal, int bLock); SQLITE_PRIVATE void sqlite3WalDb(Wal *pWal, sqlite3 *db); #endif #ifdef SQLITE_USE_SEH SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal*); #endif #endif /* ifndef SQLITE_OMIT_WAL */ #endif /* SQLITE_WAL_H */ /************** End of wal.h *************************************************/ /************** Continuing where we left off in pager.c **********************/ |
︙ | ︙ | |||
56044 56045 56046 56047 56048 56049 56050 | ** instead of READER following such an error. ** ** Once it has entered the ERROR state, any attempt to use the pager ** to read or write data returns an error. Eventually, once all ** outstanding transactions have been abandoned, the pager is able to ** transition back to OPEN state, discarding the contents of the ** page-cache and any other in-memory state at the same time. Everything | | | 56524 56525 56526 56527 56528 56529 56530 56531 56532 56533 56534 56535 56536 56537 56538 | ** instead of READER following such an error. ** ** Once it has entered the ERROR state, any attempt to use the pager ** to read or write data returns an error. Eventually, once all ** outstanding transactions have been abandoned, the pager is able to ** transition back to OPEN state, discarding the contents of the ** page-cache and any other in-memory state at the same time. Everything ** is reloaded from disk (and, if necessary, hot-journal rollback performed) ** when a read-transaction is next opened on the pager (transitioning ** the pager into READER state). At that point the system has recovered ** from the error. ** ** Specifically, the pager jumps into the ERROR state if: ** ** 1. An error occurs while attempting a rollback. This happens in |
︙ | ︙ | |||
57417 57418 57419 57420 57421 57422 57423 | ** ** + 4 bytes: PAGER_SJ_PGNO. ** + N bytes: super-journal filename in utf-8. ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). ** + 4 bytes: super-journal name checksum. ** + 8 bytes: aJournalMagic[]. ** | | | 57897 57898 57899 57900 57901 57902 57903 57904 57905 57906 57907 57908 57909 57910 57911 | ** ** + 4 bytes: PAGER_SJ_PGNO. ** + N bytes: super-journal filename in utf-8. ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). ** + 4 bytes: super-journal name checksum. ** + 8 bytes: aJournalMagic[]. ** ** The super-journal page checksum is the sum of the bytes in the super-journal ** name, where each byte is interpreted as a signed 8-bit integer. ** ** If zSuper is a NULL pointer (occurs for a single database transaction), ** this call is a no-op. */ static int writeSuperJournal(Pager *pPager, const char *zSuper){ int rc; /* Return code */ |
︙ | ︙ | |||
57470 57471 57472 57473 57474 57475 57476 | || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nSuper+8))) ){ return rc; } pPager->journalOff += (nSuper+20); | | | 57950 57951 57952 57953 57954 57955 57956 57957 57958 57959 57960 57961 57962 57963 57964 | || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nSuper+8))) ){ return rc; } pPager->journalOff += (nSuper+20); /* If the pager is in persistent-journal mode, then the physical ** journal-file may extend past the end of the super-journal name ** and 8 bytes of magic data just written to the file. This is ** dangerous because the code to rollback a hot-journal file ** will not be able to find the super-journal name to determine ** whether or not the journal is hot. ** ** Easiest thing to do in this scenario is to truncate the journal |
︙ | ︙ | |||
57640 57641 57642 57643 57644 57645 57646 | pPager->journalOff = 0; pPager->journalHdr = 0; pPager->setSuper = 0; } /* ** This function is called whenever an IOERR or FULL error that requires | | | 58120 58121 58122 58123 58124 58125 58126 58127 58128 58129 58130 58131 58132 58133 58134 | pPager->journalOff = 0; pPager->journalHdr = 0; pPager->setSuper = 0; } /* ** This function is called whenever an IOERR or FULL error that requires ** the pager to transition into the ERROR state may have occurred. ** The first argument is a pointer to the pager structure, the second ** the error-code about to be returned by a pager API function. The ** value returned is a copy of the second argument to this function. ** ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the ** IOERR sub-codes, the pager enters the ERROR state and the error code ** is stored in Pager.errCode. While the pager remains in the ERROR state, |
︙ | ︙ | |||
57915 57916 57917 57918 57919 57920 57921 | } } pager_unlock(pPager); } /* ** Parameter aData must point to a buffer of pPager->pageSize bytes | | | 58395 58396 58397 58398 58399 58400 58401 58402 58403 58404 58405 58406 58407 58408 58409 | } } pager_unlock(pPager); } /* ** Parameter aData must point to a buffer of pPager->pageSize bytes ** of data. Compute and return a checksum based on the contents of the ** page of data and the current value of pPager->cksumInit. ** ** This is not a real checksum. It is really just the sum of the ** random initial value (pPager->cksumInit) and every 200th byte ** of the page data, starting with byte offset (pPager->pageSize%200). ** Each byte is interpreted as an 8-bit unsigned integer. ** |
︙ | ︙ | |||
58881 58882 58883 58884 58885 58886 58887 | int rc; /* Return code */ int nList; /* Number of pages in pList */ PgHdr *p; /* For looping over pages */ assert( pPager->pWal ); assert( pList ); #ifdef SQLITE_DEBUG | | | 59361 59362 59363 59364 59365 59366 59367 59368 59369 59370 59371 59372 59373 59374 59375 | int rc; /* Return code */ int nList; /* Number of pages in pList */ PgHdr *p; /* For looping over pages */ assert( pPager->pWal ); assert( pList ); #ifdef SQLITE_DEBUG /* Verify that the page list is in ascending order */ for(p=pList; p && p->pDirty; p=p->pDirty){ assert( p->pgno < p->pDirty->pgno ); } #endif assert( pList->pDirty==0 || isCommit ); if( isCommit ){ |
︙ | ︙ | |||
59012 59013 59014 59015 59016 59017 59018 | *pnPage = nPage; return SQLITE_OK; } #ifndef SQLITE_OMIT_WAL /* ** Check if the *-wal file that corresponds to the database opened by pPager | | | 59492 59493 59494 59495 59496 59497 59498 59499 59500 59501 59502 59503 59504 59505 59506 | *pnPage = nPage; return SQLITE_OK; } #ifndef SQLITE_OMIT_WAL /* ** Check if the *-wal file that corresponds to the database opened by pPager ** exists if the database is not empty, or verify that the *-wal file does ** not exist (by deleting it) if the database file is empty. ** ** If the database is not empty and the *-wal file exists, open the pager ** in WAL mode. If the database is empty or if no *-wal file exists and ** if no error occurs, make sure Pager.journalMode is not set to ** PAGER_JOURNALMODE_WAL. ** |
︙ | ︙ | |||
60422 60423 60424 60425 60426 60427 60428 | void (*xReinit)(DbPage*) /* Function to reinitialize pages */ ){ u8 *pPtr; Pager *pPager = 0; /* Pager object to allocate and return */ int rc = SQLITE_OK; /* Return code */ int tempFile = 0; /* True for temp files (incl. in-memory files) */ int memDb = 0; /* True if this is an in-memory file */ | < < < < | 60902 60903 60904 60905 60906 60907 60908 60909 60910 60911 60912 60913 60914 60915 60916 | void (*xReinit)(DbPage*) /* Function to reinitialize pages */ ){ u8 *pPtr; Pager *pPager = 0; /* Pager object to allocate and return */ int rc = SQLITE_OK; /* Return code */ int tempFile = 0; /* True for temp files (incl. in-memory files) */ int memDb = 0; /* True if this is an in-memory file */ int memJM = 0; /* Memory journal mode */ int readOnly = 0; /* True if this is a read-only file */ int journalFileSize; /* Bytes to allocate for each journal fd */ char *zPathname = 0; /* Full path to database file */ int nPathname = 0; /* Number of bytes in zPathname */ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ |
︙ | ︙ | |||
60545 60546 60547 60548 60549 60550 60551 60552 60553 60554 60555 60556 | ** - \0 ** ** The sqlite3_create_filename() interface and the databaseFilename() utility ** that is used by sqlite3_filename_database() and kin also depend on the ** specific formatting and order of the various filenames, so if the format ** changes here, be sure to change it there as well. */ pPtr = (u8 *)sqlite3MallocZero( ROUND8(sizeof(*pPager)) + /* Pager structure */ ROUND8(pcacheSize) + /* PCache object */ ROUND8(pVfs->szOsFile) + /* The main db file */ journalFileSize * 2 + /* The two journal files */ | > | | | 61021 61022 61023 61024 61025 61026 61027 61028 61029 61030 61031 61032 61033 61034 61035 61036 61037 61038 61039 61040 61041 61042 61043 61044 61045 61046 61047 61048 61049 61050 61051 61052 61053 61054 61055 61056 61057 61058 61059 61060 61061 61062 | ** - \0 ** ** The sqlite3_create_filename() interface and the databaseFilename() utility ** that is used by sqlite3_filename_database() and kin also depend on the ** specific formatting and order of the various filenames, so if the format ** changes here, be sure to change it there as well. */ assert( SQLITE_PTRSIZE==sizeof(Pager*) ); pPtr = (u8 *)sqlite3MallocZero( ROUND8(sizeof(*pPager)) + /* Pager structure */ ROUND8(pcacheSize) + /* PCache object */ ROUND8(pVfs->szOsFile) + /* The main db file */ journalFileSize * 2 + /* The two journal files */ SQLITE_PTRSIZE + /* Space to hold a pointer */ 4 + /* Database prefix */ nPathname + 1 + /* database filename */ nUriByte + /* query parameters */ nPathname + 8 + 1 + /* Journal filename */ #ifndef SQLITE_OMIT_WAL nPathname + 4 + 1 + /* WAL filename */ #endif 3 /* Terminator */ ); assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); if( !pPtr ){ sqlite3DbFree(0, zPathname); return SQLITE_NOMEM_BKPT; } pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); memcpy(pPtr, &pPager, SQLITE_PTRSIZE); pPtr += SQLITE_PTRSIZE; /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ pPtr += 4; /* Skip zero prefix */ pPager->zFilename = (char*)pPtr; if( nPathname>0 ){ memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; if( zUri ){ |
︙ | ︙ | |||
60625 60626 60627 60628 60629 60630 60631 | /* Open the pager file. */ if( zFilename && zFilename[0] ){ int fout = 0; /* VFS flags returned by xOpen() */ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); assert( !memDb ); | < < | 61102 61103 61104 61105 61106 61107 61108 61109 61110 61111 61112 61113 61114 61115 61116 | /* Open the pager file. */ if( zFilename && zFilename[0] ){ int fout = 0; /* VFS flags returned by xOpen() */ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); assert( !memDb ); pPager->memVfs = memJM = (fout&SQLITE_OPEN_MEMORY)!=0; readOnly = (fout&SQLITE_OPEN_READONLY)!=0; /* If the file was successfully opened for read/write access, ** choose a default page size in case we have to create the ** database file. The default page size is the maximum of: ** ** + SQLITE_DEFAULT_PAGE_SIZE, |
︙ | ︙ | |||
60764 60765 60766 60767 60768 60769 60770 | *ppPager = pPager; return SQLITE_OK; } /* ** Return the sqlite3_file for the main database given the name | | | 61239 61240 61241 61242 61243 61244 61245 61246 61247 61248 61249 61250 61251 61252 61253 | *ppPager = pPager; return SQLITE_OK; } /* ** Return the sqlite3_file for the main database given the name ** of the corresponding WAL or Journal name as passed into ** xOpen. */ SQLITE_API sqlite3_file *sqlite3_database_file_object(const char *zName){ Pager *pPager; while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ zName--; } |
︙ | ︙ | |||
63049 63050 63051 63052 63053 63054 63055 | if( eMode!=eOld ){ /* Change the journal mode. */ assert( pPager->eState!=PAGER_ERROR ); pPager->journalMode = (u8)eMode; | | | 63524 63525 63526 63527 63528 63529 63530 63531 63532 63533 63534 63535 63536 63537 63538 | if( eMode!=eOld ){ /* Change the journal mode. */ assert( pPager->eState!=PAGER_ERROR ); pPager->journalMode = (u8)eMode; /* When transitioning from TRUNCATE or PERSIST to any other journal ** mode except WAL, unless the pager is in locking_mode=exclusive mode, ** delete the journal file. */ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); |
︙ | ︙ | |||
63216 63217 63218 63219 63220 63221 63222 63223 | /* ** Attempt to take an exclusive lock on the database file. If a PENDING lock ** is obtained instead, immediately release it. */ static int pagerExclusiveLock(Pager *pPager){ int rc; /* Return code */ | > | > | | 63691 63692 63693 63694 63695 63696 63697 63698 63699 63700 63701 63702 63703 63704 63705 63706 63707 63708 63709 63710 63711 63712 63713 | /* ** Attempt to take an exclusive lock on the database file. If a PENDING lock ** is obtained instead, immediately release it. */ static int pagerExclusiveLock(Pager *pPager){ int rc; /* Return code */ u8 eOrigLock; /* Original lock */ assert( pPager->eLock>=SHARED_LOCK ); eOrigLock = pPager->eLock; rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ /* If the attempt to grab the exclusive lock failed, release the ** pending lock that may have been obtained instead. */ pagerUnlockDb(pPager, eOrigLock); } return rc; } /* ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in |
︙ | ︙ | |||
63474 63475 63476 63477 63478 63479 63480 63481 63482 63483 63484 63485 63486 63487 | ** is empty, return 0. */ SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ assert( pPager->eState>=PAGER_READER ); return sqlite3WalFramesize(pPager->pWal); } #endif #endif /* SQLITE_OMIT_DISKIO */ /************** End of pager.c ***********************************************/ /************** Begin file wal.c *********************************************/ /* ** 2010 February 1 | > > > > > > | 63951 63952 63953 63954 63955 63956 63957 63958 63959 63960 63961 63962 63963 63964 63965 63966 63967 63968 63969 63970 | ** is empty, return 0. */ SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ assert( pPager->eState>=PAGER_READER ); return sqlite3WalFramesize(pPager->pWal); } #endif #ifdef SQLITE_USE_SEH SQLITE_PRIVATE int sqlite3PagerWalSystemErrno(Pager *pPager){ return sqlite3WalSystemErrno(pPager->pWal); } #endif #endif /* SQLITE_OMIT_DISKIO */ /************** End of pager.c ***********************************************/ /************** Begin file wal.c *********************************************/ /* ** 2010 February 1 |
︙ | ︙ | |||
63765 63766 63767 63768 63769 63770 63771 | /* ** Index numbers for various locking bytes. WAL_NREADER is the number ** of available reader locks and should be at least 3. The default ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. ** ** Technically, the various VFSes are free to implement these locks however ** they see fit. However, compatibility is encouraged so that VFSes can | | | 64248 64249 64250 64251 64252 64253 64254 64255 64256 64257 64258 64259 64260 64261 64262 | /* ** Index numbers for various locking bytes. WAL_NREADER is the number ** of available reader locks and should be at least 3. The default ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. ** ** Technically, the various VFSes are free to implement these locks however ** they see fit. However, compatibility is encouraged so that VFSes can ** interoperate. The standard implementation used on both unix and windows ** is for the index number to indicate a byte offset into the ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which ** should be 120) is the location in the shm file for the first locking ** byte. */ #define WAL_WRITE_LOCK 0 |
︙ | ︙ | |||
63841 63842 63843 63844 63845 63846 63847 | ** never be read or written. ** ** There is one entry in aReadMark[] for each reader lock. If a reader ** holds read-lock K, then the value in aReadMark[K] is no greater than ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) ** for any aReadMark[] means that entry is unused. aReadMark[0] is ** a special case; its value is never used and it exists as a place-holder | | | 64324 64325 64326 64327 64328 64329 64330 64331 64332 64333 64334 64335 64336 64337 64338 | ** never be read or written. ** ** There is one entry in aReadMark[] for each reader lock. If a reader ** holds read-lock K, then the value in aReadMark[K] is no greater than ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) ** for any aReadMark[] means that entry is unused. aReadMark[0] is ** a special case; its value is never used and it exists as a place-holder ** to avoid having to offset aReadMark[] indexes by one. Readers holding ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content ** directly from the database. ** ** The value of aReadMark[K] may only be changed by a thread that ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of ** aReadMark[K] cannot changed while there is a reader is using that mark ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). |
︙ | ︙ | |||
64009 64010 64011 64012 64013 64014 64015 64016 64017 64018 64019 64020 64021 64022 64023 | u8 padToSectorBoundary; /* Pad transactions out to the next sector */ u8 bShmUnreliable; /* SHM content is read-only and unreliable */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_DEBUG u8 lockError; /* True if a locking error has occurred */ #endif #ifdef SQLITE_ENABLE_SNAPSHOT WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ #endif #ifdef SQLITE_ENABLE_SETLK_TIMEOUT sqlite3 *db; | > > > > > > > > | 64492 64493 64494 64495 64496 64497 64498 64499 64500 64501 64502 64503 64504 64505 64506 64507 64508 64509 64510 64511 64512 64513 64514 | u8 padToSectorBoundary; /* Pad transactions out to the next sector */ u8 bShmUnreliable; /* SHM content is read-only and unreliable */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_USE_SEH u32 lockMask; /* Mask of locks held */ void *pFree; /* Pointer to sqlite3_free() if exception thrown */ u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ int iSysErrno; /* System error code following exception */ #endif #ifdef SQLITE_DEBUG int nSehTry; /* Number of nested SEH_TRY{} blocks */ u8 lockError; /* True if a locking error has occurred */ #endif #ifdef SQLITE_ENABLE_SNAPSHOT WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ #endif #ifdef SQLITE_ENABLE_SETLK_TIMEOUT sqlite3 *db; |
︙ | ︙ | |||
64090 64091 64092 64093 64094 64095 64096 64097 64098 64099 64100 64101 64102 64103 | */ #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ #define WALINDEX_PGSZ ( \ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If the wal-index is currently smaller the iPage pages then the size | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 64581 64582 64583 64584 64585 64586 64587 64588 64589 64590 64591 64592 64593 64594 64595 64596 64597 64598 64599 64600 64601 64602 64603 64604 64605 64606 64607 64608 64609 64610 64611 64612 64613 64614 64615 64616 64617 64618 64619 64620 64621 64622 64623 64624 64625 64626 64627 64628 64629 64630 64631 64632 64633 64634 64635 64636 64637 64638 64639 64640 64641 64642 64643 64644 64645 64646 64647 64648 64649 64650 64651 64652 64653 64654 64655 64656 64657 64658 64659 64660 64661 64662 64663 64664 64665 64666 64667 64668 64669 64670 64671 64672 64673 64674 64675 64676 64677 64678 64679 64680 64681 64682 64683 64684 64685 64686 64687 64688 64689 64690 64691 64692 64693 64694 64695 64696 64697 64698 64699 64700 64701 | */ #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ #define WALINDEX_PGSZ ( \ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Structured Exception Handling (SEH) is a Windows-specific technique ** for catching exceptions raised while accessing memory-mapped files. ** ** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and ** deal with system-level errors that arise during WAL -shm file processing. ** Without this compile-time option, any system-level faults that appear ** while accessing the memory-mapped -shm file will cause a process-wide ** signal to be deliver, which will more than likely cause the entire ** process to exit. */ #ifdef SQLITE_USE_SEH #include <Windows.h> /* Beginning of a block of code in which an exception might occur */ # define SEH_TRY __try { \ assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \ VVA_ONLY(pWal->nSehTry++); /* The end of a block of code in which an exception might occur */ # define SEH_EXCEPT(X) \ VVA_ONLY(pWal->nSehTry--); \ assert( pWal->nSehTry==0 ); \ } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X } /* Simulate a memory-mapping fault in the -shm file for testing purposes */ # define SEH_INJECT_FAULT sehInjectFault(pWal) /* ** The second argument is the return value of GetExceptionCode() for the ** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code ** indicates that the exception may have been caused by accessing the *-shm ** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise. */ static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){ VVA_ONLY(pWal->nSehTry--); if( eCode==EXCEPTION_IN_PAGE_ERROR ){ if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){ /* From MSDN: For this type of exception, the first element of the ** ExceptionInformation[] array is a read-write flag - 0 if the exception ** was thrown while reading, 1 if while writing. The second element is ** the virtual address being accessed. The "third array element specifies ** the underlying NTSTATUS code that resulted in the exception". */ pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2]; } return EXCEPTION_EXECUTE_HANDLER; } return EXCEPTION_CONTINUE_SEARCH; } /* ** If one is configured, invoke the xTestCallback callback with 650 as ** the argument. If it returns true, throw the same exception that is ** thrown by the system if the *-shm file mapping is accessed after it ** has been invalidated. */ static void sehInjectFault(Wal *pWal){ int res; assert( pWal->nSehTry>0 ); res = sqlite3FaultSim(650); if( res!=0 ){ ULONG_PTR aArg[3]; aArg[0] = 0; aArg[1] = 0; aArg[2] = (ULONG_PTR)res; RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg); } } /* ** There are two ways to use this macro. To set a pointer to be freed ** if an exception is thrown: ** ** SEH_FREE_ON_ERROR(0, pPtr); ** ** and to cancel the same: ** ** SEH_FREE_ON_ERROR(pPtr, 0); ** ** In the first case, there must not already be a pointer registered to ** be freed. In the second case, pPtr must be the registered pointer. */ #define SEH_FREE_ON_ERROR(X,Y) \ assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y /* ** There are two ways to use this macro. To arrange for pWal->apWiData[iPg] ** to be set to pValue if an exception is thrown: ** ** SEH_SET_ON_ERROR(iPg, pValue); ** ** and to cancel the same: ** ** SEH_SET_ON_ERROR(0, 0); */ #define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y #else # define SEH_TRY VVA_ONLY(pWal->nSehTry++); # define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 ); # define SEH_INJECT_FAULT assert( pWal->nSehTry>0 ); # define SEH_FREE_ON_ERROR(X,Y) # define SEH_SET_ON_ERROR(X,Y) #endif /* ifdef SQLITE_USE_SEH */ /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If the wal-index is currently smaller the iPage pages then the size |
︙ | ︙ | |||
64163 64164 64165 64166 64167 64168 64169 64170 64171 64172 64173 64174 64175 64176 64177 64178 64179 64180 64181 64182 64183 64184 64185 64186 64187 64188 64189 64190 64191 64192 64193 64194 64195 | return rc; } static int walIndexPage( Wal *pWal, /* The WAL context */ int iPage, /* The page we seek */ volatile u32 **ppPage /* Write the page pointer here */ ){ if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ return walIndexPageRealloc(pWal, iPage, ppPage); } return SQLITE_OK; } /* ** Return a pointer to the WalCkptInfo structure in the wal-index. */ static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it | > > > | 64761 64762 64763 64764 64765 64766 64767 64768 64769 64770 64771 64772 64773 64774 64775 64776 64777 64778 64779 64780 64781 64782 64783 64784 64785 64786 64787 64788 64789 64790 64791 64792 64793 64794 64795 64796 | return rc; } static int walIndexPage( Wal *pWal, /* The WAL context */ int iPage, /* The page we seek */ volatile u32 **ppPage /* Write the page pointer here */ ){ SEH_INJECT_FAULT; if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ return walIndexPageRealloc(pWal, iPage, ppPage); } return SQLITE_OK; } /* ** Return a pointer to the WalCkptInfo structure in the wal-index. */ static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); SEH_INJECT_FAULT; return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); SEH_INJECT_FAULT; return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it |
︙ | ︙ | |||
64371 64372 64373 64374 64375 64376 64377 | /* A frame is only valid if the salt values in the frame-header ** match the salt values in the wal-header. */ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ return 0; } | | | | 64972 64973 64974 64975 64976 64977 64978 64979 64980 64981 64982 64983 64984 64985 64986 64987 64988 64989 64990 64991 64992 64993 64994 | /* A frame is only valid if the salt values in the frame-header ** match the salt values in the wal-header. */ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ return 0; } /* A frame is only valid if the page number is greater than zero. */ pgno = sqlite3Get4byte(&aFrame[0]); if( pgno==0 ){ return 0; } /* A frame is only valid if a checksum of the WAL header, ** all prior frames, the first 16 bytes of this frame-header, ** and the frame-data matches the checksum in the last 8 ** bytes of this frame-header. */ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) |
︙ | ︙ | |||
64439 64440 64441 64442 64443 64444 64445 64446 64447 64448 64449 64450 64451 64452 64453 64454 64455 64456 64457 64458 64459 64460 64461 64462 64463 64464 64465 64466 64467 64468 64469 64470 64471 64472 64473 64474 | int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, walLockName(lockIdx), rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) return rc; } static void walUnlockShared(Wal *pWal, int lockIdx){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); } static int walLockExclusive(Wal *pWal, int lockIdx, int n){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, walLockName(lockIdx), n, rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) return rc; } static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, walLockName(lockIdx), n)); } /* ** Compute a hash on a page number. The resulting hash value must land ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances | > > > > > > > > > > > > > > | 65040 65041 65042 65043 65044 65045 65046 65047 65048 65049 65050 65051 65052 65053 65054 65055 65056 65057 65058 65059 65060 65061 65062 65063 65064 65065 65066 65067 65068 65069 65070 65071 65072 65073 65074 65075 65076 65077 65078 65079 65080 65081 65082 65083 65084 65085 65086 65087 65088 65089 | int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, walLockName(lockIdx), rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) #ifdef SQLITE_USE_SEH if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx); #endif return rc; } static void walUnlockShared(Wal *pWal, int lockIdx){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); #ifdef SQLITE_USE_SEH pWal->lockMask &= ~(1 << lockIdx); #endif WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); } static int walLockExclusive(Wal *pWal, int lockIdx, int n){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, walLockName(lockIdx), n, rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) #ifdef SQLITE_USE_SEH if( rc==SQLITE_OK ){ pWal->lockMask |= (((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); } #endif return rc; } static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); #ifdef SQLITE_USE_SEH pWal->lockMask &= ~(((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); #endif WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, walLockName(lockIdx), n)); } /* ** Compute a hash on a page number. The resulting hash value must land ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances |
︙ | ︙ | |||
64552 64553 64554 64555 64556 64557 64558 64559 64560 64561 64562 64563 64564 64565 | } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } /* | > | 65167 65168 65169 65170 65171 65172 65173 65174 65175 65176 65177 65178 65179 65180 65181 | } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); SEH_INJECT_FAULT; if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } /* |
︙ | ︙ | |||
64811 64812 64813 64814 64815 64816 64817 64818 64819 64820 64821 64822 64823 64824 64825 64826 64827 64828 64829 64830 64831 64832 64833 64834 64835 64836 64837 64838 64839 64840 64841 64842 | rc = SQLITE_CANTOPEN_BKPT; goto finished; } /* Malloc a buffer to read frames into. */ szFrame = szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); if( !aFrame ){ rc = SQLITE_NOMEM_BKPT; goto recovery_error; } aData = &aFrame[WAL_FRAME_HDRSIZE]; aPrivate = (u32*)&aData[szPage]; /* Read all frames from the log file. */ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ u32 *aShare; u32 iFrame; /* Index of last frame read */ u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); u32 nHdr, nHdr32; rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); assert( aShare!=0 || rc!=SQLITE_OK ); if( aShare==0 ) break; pWal->apWiData[iPg] = aPrivate; for(iFrame=iFirst; iFrame<=iLast; iFrame++){ i64 iOffset = walFrameOffset(iFrame, szPage); u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ | > > | 65427 65428 65429 65430 65431 65432 65433 65434 65435 65436 65437 65438 65439 65440 65441 65442 65443 65444 65445 65446 65447 65448 65449 65450 65451 65452 65453 65454 65455 65456 65457 65458 65459 65460 | rc = SQLITE_CANTOPEN_BKPT; goto finished; } /* Malloc a buffer to read frames into. */ szFrame = szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); SEH_FREE_ON_ERROR(0, aFrame); if( !aFrame ){ rc = SQLITE_NOMEM_BKPT; goto recovery_error; } aData = &aFrame[WAL_FRAME_HDRSIZE]; aPrivate = (u32*)&aData[szPage]; /* Read all frames from the log file. */ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ u32 *aShare; u32 iFrame; /* Index of last frame read */ u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); u32 nHdr, nHdr32; rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); assert( aShare!=0 || rc!=SQLITE_OK ); if( aShare==0 ) break; SEH_SET_ON_ERROR(iPg, aShare); pWal->apWiData[iPg] = aPrivate; for(iFrame=iFirst; iFrame<=iLast; iFrame++){ i64 iOffset = walFrameOffset(iFrame, szPage); u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ |
︙ | ︙ | |||
64856 64857 64858 64859 64860 64861 64862 64863 64864 64865 64866 64867 64868 64869 | testcase( szPage<=32768 ); testcase( szPage>=65536 ); aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; } } pWal->apWiData[iPg] = aShare; nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); nHdr32 = nHdr / sizeof(u32); #ifndef SQLITE_SAFER_WALINDEX_RECOVERY /* Memcpy() should work fine here, on all reasonable implementations. ** Technically, memcpy() might change the destination to some ** intermediate value before setting to the final value, and that might ** cause a concurrent reader to malfunction. Memcpy() is allowed to | > | 65474 65475 65476 65477 65478 65479 65480 65481 65482 65483 65484 65485 65486 65487 65488 | testcase( szPage<=32768 ); testcase( szPage>=65536 ); aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; } } pWal->apWiData[iPg] = aShare; SEH_SET_ON_ERROR(0,0); nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); nHdr32 = nHdr / sizeof(u32); #ifndef SQLITE_SAFER_WALINDEX_RECOVERY /* Memcpy() should work fine here, on all reasonable implementations. ** Technically, memcpy() might change the destination to some ** intermediate value before setting to the final value, and that might ** cause a concurrent reader to malfunction. Memcpy() is allowed to |
︙ | ︙ | |||
64886 64887 64888 64889 64890 64891 64892 64893 64894 64895 64896 64897 64898 64899 64900 64901 64902 | ** the value needs to be changed, that means it is not being ** accessed concurrently. */ aShare[i] = aPrivate[i]; } } } #endif if( iFrame<=iLast ) break; } sqlite3_free(aFrame); } finished: if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo; int i; | > > | 65505 65506 65507 65508 65509 65510 65511 65512 65513 65514 65515 65516 65517 65518 65519 65520 65521 65522 65523 | ** the value needs to be changed, that means it is not being ** accessed concurrently. */ aShare[i] = aPrivate[i]; } } } #endif SEH_INJECT_FAULT; if( iFrame<=iLast ) break; } SEH_FREE_ON_ERROR(aFrame, 0); sqlite3_free(aFrame); } finished: if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo; int i; |
︙ | ︙ | |||
64916 64917 64918 64919 64920 64921 64922 64923 64924 64925 64926 64927 64928 64929 | rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ if( i==1 && pWal->hdr.mxFrame ){ pInfo->aReadMark[i] = pWal->hdr.mxFrame; }else{ pInfo->aReadMark[i] = READMARK_NOT_USED; } walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc!=SQLITE_BUSY ){ goto recovery_error; } } /* If more than one frame was recovered from the log file, report an | > | 65537 65538 65539 65540 65541 65542 65543 65544 65545 65546 65547 65548 65549 65550 65551 | rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ if( i==1 && pWal->hdr.mxFrame ){ pInfo->aReadMark[i] = pWal->hdr.mxFrame; }else{ pInfo->aReadMark[i] = READMARK_NOT_USED; } SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc!=SQLITE_BUSY ){ goto recovery_error; } } /* If more than one frame was recovered from the log file, report an |
︙ | ︙ | |||
65073 65074 65075 65076 65077 65078 65079 | *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } return rc; } /* | | | 65695 65696 65697 65698 65699 65700 65701 65702 65703 65704 65705 65706 65707 65708 65709 | *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } return rc; } /* ** Change the size to which the WAL file is truncated on each reset. */ SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){ if( pWal ) pWal->mxWalSize = iLimit; } /* ** Find the smallest page number out of all pages held in the WAL that |
︙ | ︙ | |||
65299 65300 65301 65302 65303 65304 65305 | iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); | | > > < < < < | < < < < < | | 65921 65922 65923 65924 65925 65926 65927 65928 65929 65930 65931 65932 65933 65934 65935 65936 65937 65938 65939 65940 65941 65942 65943 65944 | iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); p = (WalIterator *)sqlite3_malloc64(nByte + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) ); if( !p ){ return SQLITE_NOMEM_BKPT; } memset(p, 0, nByte); p->nSegment = nSegment; aTmp = (ht_slot*)&(((u8*)p)[nByte]); SEH_FREE_ON_ERROR(0, p); for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ WalHashLoc sLoc; rc = walHashGet(pWal, i, &sLoc); if( rc==SQLITE_OK ){ int j; /* Counter variable */ int nEntry; /* Number of entries in this segment */ |
︙ | ︙ | |||
65343 65344 65345 65346 65347 65348 65349 | walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); p->aSegment[i].iZero = sLoc.iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aIndex; p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; } } | < < > | 65958 65959 65960 65961 65962 65963 65964 65965 65966 65967 65968 65969 65970 65971 65972 65973 | walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); p->aSegment[i].iZero = sLoc.iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aIndex; p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; } } if( rc!=SQLITE_OK ){ SEH_FREE_ON_ERROR(p, 0); walIteratorFree(p); p = 0; } *pp = p; return rc; } |
︙ | ︙ | |||
65571 65572 65573 65574 65575 65576 65577 | ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; i<WAL_NREADER; i++){ | | | < | | 66185 66186 66187 66188 66189 66190 66191 66192 66193 66194 66195 66196 66197 66198 66199 66200 66201 66202 66203 66204 66205 66206 66207 66208 66209 66210 66211 66212 66213 66214 66215 66216 66217 66218 66219 66220 66221 66222 66223 66224 66225 66226 | ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; i<WAL_NREADER; i++){ u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc==SQLITE_BUSY ){ mxSafeFrame = y; xBusy = 0; }else{ goto walcheckpoint_out; } } } /* Allocate the iterator */ if( pInfo->nBackfill<mxSafeFrame ){ rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); assert( rc==SQLITE_OK || pIter==0 ); } if( pIter && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK ){ u32 nBackfill = pInfo->nBackfill; pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; /* Sync the WAL to disk */ rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); /* If the database may grow as a result of this checkpoint, hint ** about the eventual size of the db file to the VFS layer. */ |
︙ | ︙ | |||
65630 65631 65632 65633 65634 65635 65636 65637 65638 65639 65640 65641 65642 65643 | } /* Iterate through the contents of the WAL, copying data to the db file */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ i64 iOffset; assert( walFramePgno(pWal, iFrame)==iDbpage ); if( AtomicLoad(&db->u1.isInterrupted) ){ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; break; } if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ continue; } | > | 66243 66244 66245 66246 66247 66248 66249 66250 66251 66252 66253 66254 66255 66256 66257 | } /* Iterate through the contents of the WAL, copying data to the db file */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ i64 iOffset; assert( walFramePgno(pWal, iFrame)==iDbpage ); SEH_INJECT_FAULT; if( AtomicLoad(&db->u1.isInterrupted) ){ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; break; } if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ continue; } |
︙ | ︙ | |||
65659 65660 65661 65662 65663 65664 65665 | testcase( IS_BIG_INT(szDb) ); rc = sqlite3OsTruncate(pWal->pDbFd, szDb); if( rc==SQLITE_OK ){ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); } } if( rc==SQLITE_OK ){ | | | 66273 66274 66275 66276 66277 66278 66279 66280 66281 66282 66283 66284 66285 66286 66287 | testcase( IS_BIG_INT(szDb) ); rc = sqlite3OsTruncate(pWal->pDbFd, szDb); if( rc==SQLITE_OK ){ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); } } if( rc==SQLITE_OK ){ AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT; } } /* Release the reader lock held while backfilling */ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); } |
︙ | ︙ | |||
65681 65682 65683 65684 65685 65686 65687 65688 65689 65690 65691 65692 65693 65694 | /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the ** entire wal file has been copied into the database file, then block ** until all readers have finished using the wal file. This ensures that ** the next process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); if( pInfo->nBackfill<pWal->hdr.mxFrame ){ rc = SQLITE_BUSY; }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ u32 salt1; sqlite3_randomness(4, &salt1); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); | > | 66295 66296 66297 66298 66299 66300 66301 66302 66303 66304 66305 66306 66307 66308 66309 | /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the ** entire wal file has been copied into the database file, then block ** until all readers have finished using the wal file. This ensures that ** the next process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); SEH_INJECT_FAULT; if( pInfo->nBackfill<pWal->hdr.mxFrame ){ rc = SQLITE_BUSY; }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ u32 salt1; sqlite3_randomness(4, &salt1); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); |
︙ | ︙ | |||
65712 65713 65714 65715 65716 65717 65718 65719 65720 65721 65722 65723 65724 65725 | } walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } } walcheckpoint_out: walIteratorFree(pIter); return rc; } /* ** If the WAL file is currently larger than nMax bytes in size, truncate ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. | > | 66327 66328 66329 66330 66331 66332 66333 66334 66335 66336 66337 66338 66339 66340 66341 | } walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } } walcheckpoint_out: SEH_FREE_ON_ERROR(pIter, 0); walIteratorFree(pIter); return rc; } /* ** If the WAL file is currently larger than nMax bytes in size, truncate ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. |
︙ | ︙ | |||
65734 65735 65736 65737 65738 65739 65740 65741 65742 65743 65744 65745 65746 65747 65748 65749 65750 65751 65752 65753 65754 65755 65756 65757 65758 65759 65760 | } sqlite3EndBenignMalloc(); if( rx ){ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); } } /* ** Close a connection to a log file. */ SQLITE_PRIVATE int sqlite3WalClose( Wal *pWal, /* Wal to close */ sqlite3 *db, /* For interrupt flag */ int sync_flags, /* Flags to pass to OsSync() (or 0) */ int nBuf, u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 66350 66351 66352 66353 66354 66355 66356 66357 66358 66359 66360 66361 66362 66363 66364 66365 66366 66367 66368 66369 66370 66371 66372 66373 66374 66375 66376 66377 66378 66379 66380 66381 66382 66383 66384 66385 66386 66387 66388 66389 66390 66391 66392 66393 66394 66395 66396 66397 66398 66399 66400 66401 66402 66403 66404 66405 66406 66407 66408 66409 66410 66411 66412 66413 66414 66415 66416 66417 66418 66419 66420 66421 66422 66423 66424 66425 66426 66427 66428 66429 66430 66431 66432 66433 66434 66435 66436 66437 66438 66439 66440 66441 66442 66443 66444 66445 66446 66447 66448 66449 66450 66451 66452 66453 66454 66455 66456 66457 66458 66459 66460 66461 66462 66463 66464 66465 | } sqlite3EndBenignMalloc(); if( rx ){ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); } } #ifdef SQLITE_USE_SEH /* ** This is the "standard" exception handler used in a few places to handle ** an exception thrown by reading from the *-shm mapping after it has become ** invalid in SQLITE_USE_SEH builds. It is used as follows: ** ** SEH_TRY { ... } ** SEH_EXCEPT( rc = walHandleException(pWal); ) ** ** This function does three things: ** ** 1) Determines the locks that should be held, based on the contents of ** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other ** held locks are assumed to be transient locks that would have been ** released had the exception not been thrown and are dropped. ** ** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free(). ** ** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL ** ** 4) Returns SQLITE_IOERR. */ static int walHandleException(Wal *pWal){ if( pWal->exclusiveMode==0 ){ static const int S = 1; static const int E = (1<<SQLITE_SHM_NLOCK); int ii; u32 mUnlock = pWal->lockMask & ~( (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) ); for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){ if( (S<<ii) & mUnlock ) walUnlockShared(pWal, ii); if( (E<<ii) & mUnlock ) walUnlockExclusive(pWal, ii, 1); } } sqlite3_free(pWal->pFree); pWal->pFree = 0; if( pWal->pWiValue ){ pWal->apWiData[pWal->iWiPg] = pWal->pWiValue; pWal->pWiValue = 0; } return SQLITE_IOERR_IN_PAGE; } /* ** Assert that the Wal.lockMask mask, which indicates the locks held ** by the connenction, is consistent with the Wal.readLock, Wal.writeLock ** and Wal.ckptLock variables. To be used as: ** ** assert( walAssertLockmask(pWal) ); */ static int walAssertLockmask(Wal *pWal){ if( pWal->exclusiveMode==0 ){ static const int S = 1; static const int E = (1<<SQLITE_SHM_NLOCK); u32 mExpect = ( (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) #ifdef SQLITE_ENABLE_SNAPSHOT | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0) #endif ); assert( mExpect==pWal->lockMask ); } return 1; } /* ** Return and zero the "system error" field set when an ** EXCEPTION_IN_PAGE_ERROR exception is caught. */ SQLITE_PRIVATE int sqlite3WalSystemErrno(Wal *pWal){ int iRet = 0; if( pWal ){ iRet = pWal->iSysErrno; pWal->iSysErrno = 0; } return iRet; } #else # define walAssertLockmask(x) 1 #endif /* ifdef SQLITE_USE_SEH */ /* ** Close a connection to a log file. */ SQLITE_PRIVATE int sqlite3WalClose( Wal *pWal, /* Wal to close */ sqlite3 *db, /* For interrupt flag */ int sync_flags, /* Flags to pass to OsSync() (or 0) */ int nBuf, u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ assert( walAssertLockmask(pWal) ); /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** |
︙ | ︙ | |||
65772 65773 65774 65775 65776 65777 65778 | if( rc==SQLITE_OK ){ int bPersist = -1; sqlite3OsFileControlHint( pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist ); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and | | | 66477 66478 66479 66480 66481 66482 66483 66484 66485 66486 66487 66488 66489 66490 66491 | if( rc==SQLITE_OK ){ int bPersist = -1; sqlite3OsFileControlHint( pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist ); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal ** mode (!bPersist) */ isDelete = 1; }else if( pWal->mxWalSize>=0 ){ /* Try to truncate the WAL file to zero bytes if the checkpoint ** completed and fsynced (rc==SQLITE_OK) and we are in persistent ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a ** non-negative value (pWal->mxWalSize>=0). Note that we truncate |
︙ | ︙ | |||
65839 65840 65841 65842 65843 65844 65845 | ** There are two copies of the header at the beginning of the wal-index. ** When reading, read [0] first then [1]. Writes are in the reverse order. ** Memory barriers are used to prevent the compiler or the hardware from ** reordering the reads and writes. TSAN and similar tools can sometimes ** give false-positive warnings about these accesses because the tools do not ** account for the double-read and the memory barrier. The use of mutexes ** here would be problematic as the memory being accessed is potentially | | | 66544 66545 66546 66547 66548 66549 66550 66551 66552 66553 66554 66555 66556 66557 66558 | ** There are two copies of the header at the beginning of the wal-index. ** When reading, read [0] first then [1]. Writes are in the reverse order. ** Memory barriers are used to prevent the compiler or the hardware from ** reordering the reads and writes. TSAN and similar tools can sometimes ** give false-positive warnings about these accesses because the tools do not ** account for the double-read and the memory barrier. The use of mutexes ** here would be problematic as the memory being accessed is potentially ** shared among multiple processes and not all mutex implementations work ** reliably in that environment. */ aHdr = walIndexHdr(pWal); memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ walShmBarrier(pWal); memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); |
︙ | ︙ | |||
66290 66291 66292 66293 66294 66295 66296 66297 66298 66299 66300 66301 66302 66303 | return walBeginShmUnreliable(pWal, pChanged); } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame #ifdef SQLITE_ENABLE_SNAPSHOT && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) #endif ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. | > | 66995 66996 66997 66998 66999 67000 67001 67002 67003 67004 67005 67006 67007 67008 67009 | return walBeginShmUnreliable(pWal, pChanged); } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); SEH_INJECT_FAULT; if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame #ifdef SQLITE_ENABLE_SNAPSHOT && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) #endif ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. |
︙ | ︙ | |||
66339 66340 66341 66342 66343 66344 66345 | mxFrame = pWal->hdr.mxFrame; #ifdef SQLITE_ENABLE_SNAPSHOT if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ mxFrame = pWal->pSnapshot->mxFrame; } #endif for(i=1; i<WAL_NREADER; i++){ | | | 67045 67046 67047 67048 67049 67050 67051 67052 67053 67054 67055 67056 67057 67058 67059 | mxFrame = pWal->hdr.mxFrame; #ifdef SQLITE_ENABLE_SNAPSHOT if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ mxFrame = pWal->pSnapshot->mxFrame; } #endif for(i=1; i<WAL_NREADER; i++){ u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; if( mxReadMark<=thisMark && thisMark<=mxFrame ){ assert( thisMark!=READMARK_NOT_USED ); mxReadMark = thisMark; mxI = i; } } if( (pWal->readOnly & WAL_SHM_RDONLY)==0 |
︙ | ︙ | |||
66405 66406 66407 66408 66409 66410 66411 | ** A) on the basis that there is a newer version (version B) of the same ** page later in the wal file. But if version B happens to like past ** frame pWal->hdr.mxFrame - then the client would incorrectly assume ** that it can read version A from the database file. However, since ** we can guarantee that the checkpointer that set nBackfill could not ** see any pages past pWal->hdr.mxFrame, this problem does not come up. */ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 67111 67112 67113 67114 67115 67116 67117 67118 67119 67120 67121 67122 67123 67124 67125 67126 67127 67128 67129 67130 67131 67132 67133 67134 67135 67136 67137 67138 67139 67140 67141 67142 67143 67144 67145 67146 67147 67148 67149 67150 67151 67152 67153 67154 67155 67156 67157 67158 67159 67160 67161 67162 67163 67164 67165 67166 67167 67168 67169 67170 67171 67172 67173 67174 67175 67176 67177 67178 67179 67180 67181 67182 67183 67184 67185 67186 67187 | ** A) on the basis that there is a newer version (version B) of the same ** page later in the wal file. But if version B happens to like past ** frame pWal->hdr.mxFrame - then the client would incorrectly assume ** that it can read version A from the database file. However, since ** we can guarantee that the checkpointer that set nBackfill could not ** see any pages past pWal->hdr.mxFrame, this problem does not come up. */ pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT; walShmBarrier(pWal); if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ walUnlockShared(pWal, WAL_READ_LOCK(mxI)); return WAL_RETRY; }else{ assert( mxReadMark<=pWal->hdr.mxFrame ); pWal->readLock = (i16)mxI; } return rc; } #ifdef SQLITE_ENABLE_SNAPSHOT /* ** This function does the work of sqlite3WalSnapshotRecover(). */ static int walSnapshotRecover( Wal *pWal, /* WAL handle */ void *pBuf1, /* Temp buffer pWal->szPage bytes in size */ void *pBuf2 /* Temp buffer pWal->szPage bytes in size */ ){ int szPage = (int)pWal->szPage; int rc; i64 szDb; /* Size of db file in bytes */ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); u32 i = pInfo->nBackfillAttempted; for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ WalHashLoc sLoc; /* Hash table location */ u32 pgno; /* Page number in db file */ i64 iDbOff; /* Offset of db file entry */ i64 iWalOff; /* Offset of wal file entry */ rc = walHashGet(pWal, walFramePage(i), &sLoc); if( rc!=SQLITE_OK ) break; assert( i - sLoc.iZero - 1 >=0 ); pgno = sLoc.aPgno[i-sLoc.iZero-1]; iDbOff = (i64)(pgno-1) * szPage; if( iDbOff+szPage<=szDb ){ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); if( rc==SQLITE_OK ){ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); } if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ break; } } pInfo->nBackfillAttempted = i-1; } } return rc; } /* ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted ** variable so that older snapshots can be accessed. To do this, loop ** through all wal frames from nBackfillAttempted to (nBackfill+1), ** comparing their content to the corresponding page with the database ** file, if any. Set nBackfillAttempted to the frame number of the ** first frame for which the wal file content matches the db file. |
︙ | ︙ | |||
66445 66446 66447 66448 66449 66450 66451 | */ SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ | < < < < < < | | | | | < < < < < < | < < < < < | < < < | < < | | < < < < | < | | < | | < | | < < < < < < < < < < | > > | 67199 67200 67201 67202 67203 67204 67205 67206 67207 67208 67209 67210 67211 67212 67213 67214 67215 67216 67217 67218 67219 67220 67221 67222 67223 67224 67225 67226 67227 67228 67229 67230 67231 67232 67233 67234 67235 67236 67237 67238 67239 67240 67241 67242 67243 67244 67245 67246 67247 67248 67249 | */ SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ void *pBuf1 = sqlite3_malloc(pWal->szPage); void *pBuf2 = sqlite3_malloc(pWal->szPage); if( pBuf1==0 || pBuf2==0 ){ rc = SQLITE_NOMEM; }else{ pWal->ckptLock = 1; SEH_TRY { rc = walSnapshotRecover(pWal, pBuf1, pBuf2); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) pWal->ckptLock = 0; } sqlite3_free(pBuf1); sqlite3_free(pBuf2); walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); } return rc; } #endif /* SQLITE_ENABLE_SNAPSHOT */ /* ** This function does the work of sqlite3WalBeginReadTransaction() (see ** below). That function simply calls this one inside an SEH_TRY{...} block. */ static int walBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ #ifdef SQLITE_ENABLE_SNAPSHOT int ckptLock = 0; int bChanged = 0; WalIndexHdr *pSnapshot = pWal->pSnapshot; #endif assert( pWal->ckptLock==0 ); assert( pWal->nSehTry>0 ); #ifdef SQLITE_ENABLE_SNAPSHOT if( pSnapshot ){ if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ bChanged = 1; } |
︙ | ︙ | |||
66541 66542 66543 66544 66545 66546 66547 | (void)walEnableBlocking(pWal); rc = walLockShared(pWal, WAL_CKPT_LOCK); walDisableBlocking(pWal); if( rc!=SQLITE_OK ){ return rc; } | | | 67258 67259 67260 67261 67262 67263 67264 67265 67266 67267 67268 67269 67270 67271 67272 | (void)walEnableBlocking(pWal); rc = walLockShared(pWal, WAL_CKPT_LOCK); walDisableBlocking(pWal); if( rc!=SQLITE_OK ){ return rc; } ckptLock = 1; } #endif do{ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); }while( rc==WAL_RETRY ); testcase( (rc&0xff)==SQLITE_BUSY ); |
︙ | ︙ | |||
66605 66606 66607 66608 66609 66610 66611 | if( rc!=SQLITE_OK ){ sqlite3WalEndReadTransaction(pWal); } } } /* Release the shared CKPT lock obtained above. */ | | < > > > > > > > > > > > > > > > > > > > > > > > | 67322 67323 67324 67325 67326 67327 67328 67329 67330 67331 67332 67333 67334 67335 67336 67337 67338 67339 67340 67341 67342 67343 67344 67345 67346 67347 67348 67349 67350 67351 67352 67353 67354 67355 67356 67357 67358 67359 67360 67361 67362 67363 67364 67365 | if( rc!=SQLITE_OK ){ sqlite3WalEndReadTransaction(pWal); } } } /* Release the shared CKPT lock obtained above. */ if( ckptLock ){ assert( pSnapshot ); walUnlockShared(pWal, WAL_CKPT_LOCK); } #endif return rc; } /* ** Begin a read transaction on the database. ** ** This routine used to be called sqlite3OpenSnapshot() and with good reason: ** it takes a snapshot of the state of the WAL and wal-index for the current ** instant in time. The current thread will continue to use this snapshot. ** Other threads might append new content to the WAL and wal-index but ** that extra content is ignored by the current thread. ** ** If the database contents have changes since the previous read ** transaction, then *pChanged is set to 1 before returning. The ** Pager layer will use this to know that its cache is stale and ** needs to be flushed. */ SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; SEH_TRY { rc = walBeginReadTransaction(pWal, pChanged); } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){ sqlite3WalEndWriteTransaction(pWal); |
︙ | ︙ | |||
66634 66635 66636 66637 66638 66639 66640 | ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. */ | | | 67373 67374 67375 67376 67377 67378 67379 67380 67381 67382 67383 67384 67385 67386 67387 | ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. */ static int walFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ u32 iRead = 0; /* If !=0, WAL frame to return data from */ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ int iHash; /* Used to loop through N hash tables */ |
︙ | ︙ | |||
66697 66698 66699 66700 66701 66702 66703 66704 66705 66706 66707 66708 66709 66710 | rc = walHashGet(pWal, iHash, &sLoc); if( rc!=SQLITE_OK ){ return rc; } nCollide = HASHTABLE_NSLOT; iKey = walHash(pgno); while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ u32 iFrame = iH + sLoc.iZero; if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ assert( iFrame>iRead || CORRUPT_DB ); iRead = iFrame; } if( (nCollide--)==0 ){ | > | 67436 67437 67438 67439 67440 67441 67442 67443 67444 67445 67446 67447 67448 67449 67450 | rc = walHashGet(pWal, iHash, &sLoc); if( rc!=SQLITE_OK ){ return rc; } nCollide = HASHTABLE_NSLOT; iKey = walHash(pgno); SEH_INJECT_FAULT; while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ u32 iFrame = iH + sLoc.iZero; if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ assert( iFrame>iRead || CORRUPT_DB ); iRead = iFrame; } if( (nCollide--)==0 ){ |
︙ | ︙ | |||
66732 66733 66734 66735 66736 66737 66738 66739 66740 66741 66742 66743 66744 66745 | assert( iRead==iRead2 ); } #endif *piRead = iRead; return SQLITE_OK; } /* ** Read the contents of frame iRead from the wal file into buffer pOut ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an ** error code otherwise. */ SQLITE_PRIVATE int sqlite3WalReadFrame( | > > > > > > > > > > > > > > > > > > > > > > > > | 67472 67473 67474 67475 67476 67477 67478 67479 67480 67481 67482 67483 67484 67485 67486 67487 67488 67489 67490 67491 67492 67493 67494 67495 67496 67497 67498 67499 67500 67501 67502 67503 67504 67505 67506 67507 67508 67509 | assert( iRead==iRead2 ); } #endif *piRead = iRead; return SQLITE_OK; } /* ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. ** ** The difference between this function and walFindFrame() is that this ** function wraps walFindFrame() in an SEH_TRY{...} block. */ SQLITE_PRIVATE int sqlite3WalFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ int rc; SEH_TRY { rc = walFindFrame(pWal, pgno, piRead); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) return rc; } /* ** Read the contents of frame iRead from the wal file into buffer pOut ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an ** error code otherwise. */ SQLITE_PRIVATE int sqlite3WalReadFrame( |
︙ | ︙ | |||
66814 66815 66816 66817 66818 66819 66820 | } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ | > | < < | | | > > > > > > | 67578 67579 67580 67581 67582 67583 67584 67585 67586 67587 67588 67589 67590 67591 67592 67593 67594 67595 67596 67597 67598 67599 67600 67601 67602 | } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ SEH_TRY { if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ rc = SQLITE_BUSY_SNAPSHOT; } } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) if( rc!=SQLITE_OK ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; } return rc; } /* ** End a write transaction. The commit has already been done. This ** routine merely releases the lock. */ |
︙ | ︙ | |||
66855 66856 66857 66858 66859 66860 66861 | */ SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; | > | | | | | | | | | | | | | | | | | | | | | | | > > | 67624 67625 67626 67627 67628 67629 67630 67631 67632 67633 67634 67635 67636 67637 67638 67639 67640 67641 67642 67643 67644 67645 67646 67647 67648 67649 67650 67651 67652 67653 67654 67655 67656 67657 67658 67659 67660 67661 67662 67663 67664 | */ SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; SEH_TRY { /* Restore the clients cache of the wal-index header to the state it ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); for(iFrame=pWal->hdr.mxFrame+1; ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++ ){ /* This call cannot fail. Unless the page for which the page number ** is passed as the second argument is (a) in the cache and ** (b) has an outstanding reference, then xUndo is either a no-op ** (if (a) is false) or simply expels the page from the cache (if (b) ** is false). ** ** If the upper layer is doing a rollback, it is guaranteed that there ** are no outstanding references to any page other than page 1. And ** page 1 is never written to the log until the transaction is ** committed. As a result, the call to xUndo may not fail. */ assert( walFramePgno(pWal, iFrame)!=1 ); rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); } if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 ** values. This function populates the array with values required to |
︙ | ︙ | |||
66922 66923 66924 66925 66926 66927 66928 | aWalData[3] = pWal->nCkpt; } if( aWalData[0]<pWal->hdr.mxFrame ){ pWal->hdr.mxFrame = aWalData[0]; pWal->hdr.aFrameCksum[0] = aWalData[1]; pWal->hdr.aFrameCksum[1] = aWalData[2]; | > | > > | 67694 67695 67696 67697 67698 67699 67700 67701 67702 67703 67704 67705 67706 67707 67708 67709 67710 67711 | aWalData[3] = pWal->nCkpt; } if( aWalData[0]<pWal->hdr.mxFrame ){ pWal->hdr.mxFrame = aWalData[0]; pWal->hdr.aFrameCksum[0] = aWalData[1]; pWal->hdr.aFrameCksum[1] = aWalData[2]; SEH_TRY { walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** This function is called just before writing a set of frames to the log |
︙ | ︙ | |||
67103 67104 67105 67106 67107 67108 67109 | return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ | | | 67878 67879 67880 67881 67882 67883 67884 67885 67886 67887 67888 67889 67890 67891 67892 | return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ static int walFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ |
︙ | ︙ | |||
67214 67215 67216 67217 67218 67219 67220 | /* Check if this page has already been written into the wal file by ** the current transaction. If so, overwrite the existing frame and ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that ** checksums must be recomputed when the transaction is committed. */ if( iFirst && (p->pDirty || isCommit==0) ){ u32 iWrite = 0; | | | 67989 67990 67991 67992 67993 67994 67995 67996 67997 67998 67999 68000 68001 68002 68003 | /* Check if this page has already been written into the wal file by ** the current transaction. If so, overwrite the existing frame and ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that ** checksums must be recomputed when the transaction is committed. */ if( iFirst && (p->pDirty || isCommit==0) ){ u32 iWrite = 0; VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite); assert( rc==SQLITE_OK || iWrite==0 ); if( iWrite>=iFirst ){ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; void *pData; if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ pWal->iReCksum = iWrite; } |
︙ | ︙ | |||
67332 67333 67334 67335 67336 67337 67338 67339 67340 67341 67342 67343 67344 67345 | pWal->iCallback = iFrame; } } WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); return rc; } /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. | > > > > > > > > > > > > > > > > > > > > > > > | 68107 68108 68109 68110 68111 68112 68113 68114 68115 68116 68117 68118 68119 68120 68121 68122 68123 68124 68125 68126 68127 68128 68129 68130 68131 68132 68133 68134 68135 68136 68137 68138 68139 68140 68141 68142 68143 | pWal->iCallback = iFrame; } } WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). ** ** The difference between this function and walFrames() is that this ** function wraps walFrames() in an SEH_TRY{...} block. */ SQLITE_PRIVATE int sqlite3WalFrames( Wal *pWal, /* Wal handle to write to */ int szPage, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; SEH_TRY { rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags); } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. |
︙ | ︙ | |||
67412 67413 67414 67415 67416 67417 67418 | rc = SQLITE_OK; } } } /* Read the wal-index header. */ | > | | | | | | | | | | < | | | | | | | | > | | | > > | 68210 68211 68212 68213 68214 68215 68216 68217 68218 68219 68220 68221 68222 68223 68224 68225 68226 68227 68228 68229 68230 68231 68232 68233 68234 68235 68236 68237 68238 68239 68240 68241 68242 68243 68244 68245 68246 68247 68248 68249 68250 | rc = SQLITE_OK; } } } /* Read the wal-index header. */ SEH_TRY { if( rc==SQLITE_OK ){ walDisableBlocking(pWal); rc = walIndexReadHdr(pWal, &isChanged); (void)walEnableBlocking(pWal); if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); } } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); } /* If no error occurred, set the output variables. */ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; SEH_INJECT_FAULT; if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); } } } SEH_EXCEPT( rc = walHandleException(pWal); ) if( isChanged ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. |
︙ | ︙ | |||
67512 67513 67514 67515 67516 67517 67518 67519 67520 67521 67522 67523 67524 67525 67526 | /* pWal->readLock is usually set, but might be -1 if there was a ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ assert( pWal->readLock>=0 || pWal->lockError ); assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_NORMAL_MODE; if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; | > > | 68313 68314 68315 68316 68317 68318 68319 68320 68321 68322 68323 68324 68325 68326 68327 68328 68329 | /* pWal->readLock is usually set, but might be -1 if there was a ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ #ifndef SQLITE_USE_SEH assert( pWal->readLock>=0 || pWal->lockError ); #endif assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_NORMAL_MODE; if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; |
︙ | ︙ | |||
67613 67614 67615 67616 67617 67618 67619 | ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ int rc; | > | | | | | | | | | | > > | 68416 68417 68418 68419 68420 68421 68422 68423 68424 68425 68426 68427 68428 68429 68430 68431 68432 68433 68434 68435 68436 68437 68438 68439 68440 68441 68442 | ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ SQLITE_PRIVATE int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ int rc; SEH_TRY { rc = walLockShared(pWal, WAL_CKPT_LOCK); if( rc==SQLITE_OK ){ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted ){ rc = SQLITE_ERROR_SNAPSHOT; walUnlockShared(pWal, WAL_CKPT_LOCK); } } } SEH_EXCEPT( rc = walHandleException(pWal); ) return rc; } /* ** Release a lock obtained by an earlier successful call to ** sqlite3WalSnapshotCheck(). */ |
︙ | ︙ | |||
67861 67862 67863 67864 67865 67866 67867 | ** allows a 64-bit integer to be encoded in 9 bytes. ** ** 0x00 becomes 0x00000000 ** 0x7f becomes 0x0000007f ** 0x81 0x00 becomes 0x00000080 ** 0x82 0x00 becomes 0x00000100 ** 0x80 0x7f becomes 0x0000007f | | | 68667 68668 68669 68670 68671 68672 68673 68674 68675 68676 68677 68678 68679 68680 68681 | ** allows a 64-bit integer to be encoded in 9 bytes. ** ** 0x00 becomes 0x00000000 ** 0x7f becomes 0x0000007f ** 0x81 0x00 becomes 0x00000080 ** 0x82 0x00 becomes 0x00000100 ** 0x80 0x7f becomes 0x0000007f ** 0x81 0x91 0xd1 0xac 0x78 becomes 0x12345678 ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 ** ** Variable length integers are used for rowids and to hold the number of ** bytes of key and data in a btree cell. ** ** The content of a cell looks like this: ** |
︙ | ︙ | |||
67944 67945 67946 67947 67948 67949 67950 | #define PTF_LEAF 0x08 /* ** An instance of this object stores information about each a single database ** page that has been loaded into memory. The information in this object ** is derived from the raw on-disk page content. ** | | | 68750 68751 68752 68753 68754 68755 68756 68757 68758 68759 68760 68761 68762 68763 68764 | #define PTF_LEAF 0x08 /* ** An instance of this object stores information about each a single database ** page that has been loaded into memory. The information in this object ** is derived from the raw on-disk page content. ** ** As each database page is loaded into memory, the pager allocates an ** instance of this object and zeros the first 8 bytes. (This is the ** "extra" information associated with each page of the pager.) ** ** Access to all fields of this structure is controlled by the mutex ** stored in MemPage.pBt->mutex. */ struct MemPage { |
︙ | ︙ | |||
68237 68238 68239 68240 68241 68242 68243 | /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ | | | 69043 69044 69045 69046 69047 69048 69049 69050 69051 69052 69053 69054 69055 69056 69057 | /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ #define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */ #define BTCF_AtLast 0x08 /* Cursor is pointing to the last entry */ #define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */ #define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */ #define BTCF_Pinned 0x40 /* Cursor is busy and cannot be moved */ /* ** Potential values for BtCursor.eState. ** |
︙ | ︙ | |||
68400 68401 68402 68403 68404 68405 68406 | #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /* ** get2byteAligned(), unlike get2byte(), requires that its argument point to a | | | 69206 69207 69208 69209 69210 69211 69212 69213 69214 69215 69216 69217 69218 69219 69220 | #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte /* ** get2byteAligned(), unlike get2byte(), requires that its argument point to a ** two-byte aligned address. get2byteAligned() is only used for accessing the ** cell addresses in a btree header. */ #if SQLITE_BYTEORDER==4321 # define get2byteAligned(x) (*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000 # define get2byteAligned(x) __builtin_bswap16(*(u16*)(x)) #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
︙ | ︙ | |||
68577 68578 68579 68580 68581 68582 68583 | ** connection. This is needed (for example) prior to parsing ** a statement since we will be comparing table and column names ** against all schemas and we do not want those schemas being ** reset out from under us. ** ** There is a corresponding leave-all procedures. ** | | | 69383 69384 69385 69386 69387 69388 69389 69390 69391 69392 69393 69394 69395 69396 69397 | ** connection. This is needed (for example) prior to parsing ** a statement since we will be comparing table and column names ** against all schemas and we do not want those schemas being ** reset out from under us. ** ** There is a corresponding leave-all procedures. ** ** Enter the mutexes in ascending order by BtShared pointer address ** to avoid the possibility of deadlock when two threads with ** two or more btrees in common both try to lock all their btrees ** at the same instant. */ static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){ int i; int skipOk = 1; |
︙ | ︙ | |||
68709 68710 68711 68712 68713 68714 68715 68716 68717 68718 68719 68720 68721 68722 | # endif #endif /* ifndef SQLITE_OMIT_INCRBLOB */ #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ /************** End of btmutex.c *********************************************/ /************** Begin file btree.c *******************************************/ /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. | > | 69515 69516 69517 69518 69519 69520 69521 69522 69523 69524 69525 69526 69527 69528 69529 | # endif #endif /* ifndef SQLITE_OMIT_INCRBLOB */ #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ /************** End of btmutex.c *********************************************/ /************** Begin file btree.c *******************************************/ /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. |
︙ | ︙ | |||
70244 70245 70246 70247 70248 70249 70250 | static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ CellInfo info; if( *pRC ) return; assert( pCell!=0 ); pPage->xParseCell(pPage, pCell, &info); if( info.nLocal<info.nPayload ){ Pgno ovfl; | | | 71051 71052 71053 71054 71055 71056 71057 71058 71059 71060 71061 71062 71063 71064 71065 | static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ CellInfo info; if( *pRC ) return; assert( pCell!=0 ); pPage->xParseCell(pPage, pCell, &info); if( info.nLocal<info.nPayload ){ Pgno ovfl; if( SQLITE_OVERFLOW(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ testcase( pSrc!=pPage ); *pRC = SQLITE_CORRUPT_BKPT; return; } ovfl = get4byte(&pCell[info.nSize-4]); ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); } |
︙ | ︙ | |||
70345 70346 70347 70348 70349 70350 70351 | } cbrk = usableSize; iCellLast = usableSize - 4; iCellStart = get2byte(&data[hdr+5]); if( nCell>0 ){ temp = sqlite3PagerTempSpace(pPage->pBt->pPager); | | | 71152 71153 71154 71155 71156 71157 71158 71159 71160 71161 71162 71163 71164 71165 71166 | } cbrk = usableSize; iCellLast = usableSize - 4; iCellStart = get2byte(&data[hdr+5]); if( nCell>0 ){ temp = sqlite3PagerTempSpace(pPage->pBt->pPager); memcpy(temp, data, usableSize); src = temp; for(i=0; i<nCell; i++){ u8 *pAddr; /* The i-th cell pointer */ pAddr = &data[cellOffset + i*2]; pc = get2byte(pAddr); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); |
︙ | ︙ | |||
70569 70570 70571 70572 70573 70574 70575 | ** The first byte of the new free block is pPage->aData[iStart] ** and the size of the block is iSize bytes. ** ** Adjacent freeblocks are coalesced. ** ** Even though the freeblock list was checked by btreeComputeFreeSpace(), ** that routine will not detect overlap between cells or freeblocks. Nor | | | 71376 71377 71378 71379 71380 71381 71382 71383 71384 71385 71386 71387 71388 71389 71390 | ** The first byte of the new free block is pPage->aData[iStart] ** and the size of the block is iSize bytes. ** ** Adjacent freeblocks are coalesced. ** ** Even though the freeblock list was checked by btreeComputeFreeSpace(), ** that routine will not detect overlap between cells or freeblocks. Nor ** does it detect cells or freeblocks that encroach into the reserved bytes ** at the end of the page. So do additional corruption checks inside this ** routine and return SQLITE_CORRUPT if any problems are found. */ static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ u16 iPtr; /* Address of ptr to next freeblock */ u16 iFreeBlk; /* Address of the next freeblock */ u8 hdr; /* Page header size. 0 or 100 */ |
︙ | ︙ | |||
71028 71029 71030 71031 71032 71033 71034 | SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); return btreePagecount(p->pBt); } /* ** Get a page from the pager and initialize it. | < < < < < < < < < < < > < < < > | < | > | | | > | > | | | < < < < < < < < < < < < < < < < < | 71835 71836 71837 71838 71839 71840 71841 71842 71843 71844 71845 71846 71847 71848 71849 71850 71851 71852 71853 71854 71855 71856 71857 71858 71859 71860 71861 71862 71863 71864 71865 71866 71867 71868 71869 71870 71871 71872 71873 71874 71875 71876 71877 71878 71879 71880 71881 71882 71883 | SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree *p){ assert( sqlite3BtreeHoldsMutex(p) ); return btreePagecount(p->pBt); } /* ** Get a page from the pager and initialize it. */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage, /* Write the page pointer here */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; MemPage *pPage; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ *ppPage = 0; return SQLITE_CORRUPT_BKPT; } rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); if( rc ){ *ppPage = 0; return rc; } pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); if( pPage->isInit==0 ){ btreePageFromDbPage(pDbPage, pgno, pBt); rc = btreeInitPage(pPage); if( rc!=SQLITE_OK ){ releasePage(pPage); *ppPage = 0; return rc; } } assert( pPage->pgno==pgno || CORRUPT_DB ); assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); *ppPage = pPage; return SQLITE_OK; } /* ** Release a MemPage. This should be called once for each prior ** call to btreeGetPage. ** ** Page1 is a special case and must be released using releasePageOne(). |
︙ | ︙ | |||
71172 71173 71174 71175 71176 71177 71178 | pPage->isInit = 0; if( sqlite3PagerPageRefcount(pData)>1 ){ /* pPage might not be a btree page; it might be an overflow page ** or ptrmap page or a free page. In those cases, the following ** call to btreeInitPage() will likely return SQLITE_CORRUPT. ** But no harm is done by this. And it is very important that ** btreeInitPage() be called on every btree page so we make | | | 71952 71953 71954 71955 71956 71957 71958 71959 71960 71961 71962 71963 71964 71965 71966 | pPage->isInit = 0; if( sqlite3PagerPageRefcount(pData)>1 ){ /* pPage might not be a btree page; it might be an overflow page ** or ptrmap page or a free page. In those cases, the following ** call to btreeInitPage() will likely return SQLITE_CORRUPT. ** But no harm is done by this. And it is very important that ** btreeInitPage() be called on every btree page so we make ** the call for every page that comes in for re-initializing. */ btreeInitPage(pPage); } } } /* ** Invoke the busy handler for a btree. |
︙ | ︙ | |||
71350 71351 71352 71353 71354 71355 71356 71357 71358 71359 71360 71361 71362 71363 | ** when compiling on a different architecture. */ assert( sizeof(i64)==8 ); assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); pBt = sqlite3MallocZero( sizeof(*pBt) ); if( pBt==0 ){ rc = SQLITE_NOMEM_BKPT; goto btree_open_out; } rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, | > > > | 72130 72131 72132 72133 72134 72135 72136 72137 72138 72139 72140 72141 72142 72143 72144 72145 72146 | ** when compiling on a different architecture. */ assert( sizeof(i64)==8 ); assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); /* Suppress false-positive compiler warning from PVS-Studio */ memset(&zDbHeader[16], 0, 8); pBt = sqlite3MallocZero( sizeof(*pBt) ); if( pBt==0 ){ rc = SQLITE_NOMEM_BKPT; goto btree_open_out; } rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
︙ | ︙ | |||
71567 71568 71569 71570 71571 71572 71573 | /* One of the uses of pBt->pTmpSpace is to format cells before ** inserting them into a leaf page (function fillInCell()). If ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes ** by the various routines that manipulate binary cells. Which ** can mean that fillInCell() only initializes the first 2 or 3 ** bytes of pTmpSpace, but that the first 4 bytes are copied from ** it into a database page. This is not actually a problem, but it | | | 72350 72351 72352 72353 72354 72355 72356 72357 72358 72359 72360 72361 72362 72363 72364 | /* One of the uses of pBt->pTmpSpace is to format cells before ** inserting them into a leaf page (function fillInCell()). If ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes ** by the various routines that manipulate binary cells. Which ** can mean that fillInCell() only initializes the first 2 or 3 ** bytes of pTmpSpace, but that the first 4 bytes are copied from ** it into a database page. This is not actually a problem, but it ** does cause a valgrind error when the 1 or 2 bytes of uninitialized ** data is passed to system call write(). So to avoid this error, ** zero the first 4 bytes of temp space here. ** ** Also: Provide four bytes of initialized space before the ** beginning of pTmpSpace as an area available to prepend the ** left-child pointer to the beginning of a cell. */ |
︙ | ︙ | |||
71802 71803 71804 71805 71806 71807 71808 | assert( sqlite3_mutex_held(p->pBt->mutex) ); n = p->pBt->pageSize - p->pBt->usableSize; return n; } /* ** Return the number of bytes of space at the end of every page that | | | 72585 72586 72587 72588 72589 72590 72591 72592 72593 72594 72595 72596 72597 72598 72599 | assert( sqlite3_mutex_held(p->pBt->mutex) ); n = p->pBt->pageSize - p->pBt->usableSize; return n; } /* ** Return the number of bytes of space at the end of every page that ** are intentionally left unused. This is the "reserved" space that is ** sometimes used by extensions. ** ** The value returned is the larger of the current reserve size and ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. ** The amount of reserve can only grow - never shrink. */ SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree *p){ |
︙ | ︙ | |||
72049 72050 72051 72052 72053 72054 72055 | ** between 512 and 65536 inclusive. */ if( ((pageSize-1)&pageSize)!=0 || pageSize>SQLITE_MAX_PAGE_SIZE || pageSize<=256 ){ goto page1_init_failed; } | < > > | 72832 72833 72834 72835 72836 72837 72838 72839 72840 72841 72842 72843 72844 72845 72846 72847 72848 72849 72850 72851 72852 72853 72854 72855 72856 72857 72858 72859 72860 72861 72862 72863 72864 72865 72866 72867 72868 72869 72870 72871 72872 72873 72874 72875 72876 72877 72878 72879 72880 72881 72882 72883 72884 72885 | ** between 512 and 65536 inclusive. */ if( ((pageSize-1)&pageSize)!=0 || pageSize>SQLITE_MAX_PAGE_SIZE || pageSize<=256 ){ goto page1_init_failed; } assert( (pageSize & 7)==0 ); /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte ** integer at offset 20 is the number of bytes of space at the end of ** each page to reserve for extensions. ** ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ usableSize = pageSize - page1[20]; if( (u32)pageSize!=pBt->pageSize ){ /* After reading the first page of the database assuming a page size ** of BtShared.pageSize, we have discovered that the page-size is ** actually pageSize. Unlock the database, leave pBt->pPage1 at ** zero and return SQLITE_OK. The caller will call this function ** again with the correct page-size. */ releasePageOne(pPage1); pBt->usableSize = usableSize; pBt->pageSize = pageSize; pBt->btsFlags |= BTS_PAGESIZE_FIXED; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( nPage>nPageFile ){ if( sqlite3WritableSchema(pBt->db)==0 ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; }else{ nPage = nPageFile; } } /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to ** be less than 480. In other words, if the page size is 512, then the ** reserved space size cannot exceed 32. */ if( usableSize<480 ){ goto page1_init_failed; } pBt->btsFlags |= BTS_PAGESIZE_FIXED; pBt->pageSize = pageSize; pBt->usableSize = usableSize; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); #endif } |
︙ | ︙ | |||
72266 72267 72268 72269 72270 72271 72272 | ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ | > > > | > | 73050 73051 73052 73053 73054 73055 73056 73057 73058 73059 73060 73061 73062 73063 73064 73065 73066 73067 73068 | ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ static SQLITE_NOINLINE int btreeBeginTrans( Btree *p, /* The btree in which to start the transaction */ int wrflag, /* True to start a write transaction */ int *pSchemaVersion /* Put schema version number here, if not NULL */ ){ BtShared *pBt = p->pBt; Pager *pPager = pBt->pPager; int rc = SQLITE_OK; sqlite3BtreeEnter(p); btreeIntegrity(p); |
︙ | ︙ | |||
72437 72438 72439 72440 72441 72442 72443 72444 72445 72446 72447 72448 72449 72450 | rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); } } btreeIntegrity(p); sqlite3BtreeLeave(p); return rc; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Set the pointer-map entries for all children of page pPage. Also, if ** pPage contains cells that point to overflow pages, set the pointer | > > > > > > > > > > > > > > > > > > > > > > | 73225 73226 73227 73228 73229 73230 73231 73232 73233 73234 73235 73236 73237 73238 73239 73240 73241 73242 73243 73244 73245 73246 73247 73248 73249 73250 73251 73252 73253 73254 73255 73256 73257 73258 73259 73260 | rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); } } btreeIntegrity(p); sqlite3BtreeLeave(p); return rc; } SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ BtShared *pBt; if( p->sharable || p->inTrans==TRANS_NONE || (p->inTrans==TRANS_READ && wrflag!=0) ){ return btreeBeginTrans(p,wrflag,pSchemaVersion); } pBt = p->pBt; if( pSchemaVersion ){ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); } if( wrflag ){ /* This call makes sure that the pager has the correct number of ** open savepoints. If the second parameter is greater than 0 and ** the sub-journal is not already open, then it will be opened here. */ return sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); }else{ return SQLITE_OK; } } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Set the pointer-map entries for all children of page pPage. Also, if ** pPage contains cells that point to overflow pages, set the pointer |
︙ | ︙ | |||
73533 73534 73535 73536 73537 73538 73539 | pCur->curFlags |= BTCF_Pinned; } SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor *pCur){ assert( (pCur->curFlags & BTCF_Pinned)!=0 ); pCur->curFlags &= ~BTCF_Pinned; } | < < | 74343 74344 74345 74346 74347 74348 74349 74350 74351 74352 74353 74354 74355 74356 74357 74358 74359 74360 74361 74362 74363 74364 74365 74366 74367 | pCur->curFlags |= BTCF_Pinned; } SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor *pCur){ assert( (pCur->curFlags & BTCF_Pinned)!=0 ); pCur->curFlags &= ~BTCF_Pinned; } /* ** Return the offset into the database file for the start of the ** payload to which the cursor is pointing. */ SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); getCellInfo(pCur); return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + (i64)(pCur->info.pPayload - pCur->pPage->aData); } /* ** Return the number of bytes of payload for the entry that pCur is ** currently pointing to. For table btrees, this will be the amount ** of data. For index btrees, this will be the size of the key. ** ** The caller must guarantee that the cursor is pointing to a non-NULL |
︙ | ︙ | |||
73571 73572 73573 73574 73575 73576 73577 | ** Return an upper bound on the size of any record for the table ** that the cursor is pointing into. ** ** This is an optimization. Everything will still work if this ** routine always returns 2147483647 (which is the largest record ** that SQLite can handle) or more. But returning a smaller value might ** prevent large memory allocations when trying to interpret a | | | 74379 74380 74381 74382 74383 74384 74385 74386 74387 74388 74389 74390 74391 74392 74393 | ** Return an upper bound on the size of any record for the table ** that the cursor is pointing into. ** ** This is an optimization. Everything will still work if this ** routine always returns 2147483647 (which is the largest record ** that SQLite can handle) or more. But returning a smaller value might ** prevent large memory allocations when trying to interpret a ** corrupt database. ** ** The current implementation merely returns the size of the underlying ** database file. */ SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); |
︙ | ︙ | |||
74033 74034 74035 74036 74037 74038 74039 74040 74041 74042 74043 74044 74045 74046 74047 74048 74049 74050 74051 74052 | ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->aiIdx[pCur->iPage] = pCur->ix; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; | > | > > > > | > > > > > > | 74841 74842 74843 74844 74845 74846 74847 74848 74849 74850 74851 74852 74853 74854 74855 74856 74857 74858 74859 74860 74861 74862 74863 74864 74865 74866 74867 74868 74869 74870 74871 74872 74873 74874 74875 74876 74877 74878 74879 74880 | ** ** This function returns SQLITE_CORRUPT if the page-header flags field of ** the new child page does not match the flags field of the parent (i.e. ** if an intkey page appears to be the parent of a non-intkey page, or ** vice-versa). */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->aiIdx[pCur->iPage] = pCur->ix; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; rc = getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur->curPagerFlags); assert( pCur->pPage!=0 || rc!=SQLITE_OK ); if( rc==SQLITE_OK && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey) ){ releasePage(pCur->pPage); rc = SQLITE_CORRUPT_PGNO(newPgno); } if( rc ){ pCur->pPage = pCur->apPage[--pCur->iPage]; } return rc; } #ifdef SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of |
︙ | ︙ | |||
74154 74155 74156 74157 74158 74159 74160 | if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, | | | 74973 74974 74975 74976 74977 74978 74979 74980 74981 74982 74983 74984 74985 74986 74987 | if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, pCur->curPagerFlags); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; pCur->curIntKey = pCur->pPage->intKey; } |
︙ | ︙ | |||
74266 74267 74268 74269 74270 74271 74272 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); }else if( rc==SQLITE_EMPTY ){ | | | 75085 75086 75087 75088 75089 75090 75091 75092 75093 75094 75095 75096 75097 75098 75099 | assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || (pCur->pPage!=0 && pCur->pPage->nCell==0) ); *pRes = 1; rc = SQLITE_OK; } return rc; } /* Move the cursor to the last entry in the table. Return SQLITE_OK |
︙ | ︙ | |||
74371 74372 74373 74374 74375 74376 74377 | if( (pCur->curFlags & BTCF_AtLast)!=0 ){ *pRes = -1; return SQLITE_OK; } /* If the requested key is one more than the previous key, then ** try to get there using sqlite3BtreeNext() rather than a full ** binary search. This is an optimization only. The correct answer | | | 75190 75191 75192 75193 75194 75195 75196 75197 75198 75199 75200 75201 75202 75203 75204 | if( (pCur->curFlags & BTCF_AtLast)!=0 ){ *pRes = -1; return SQLITE_OK; } /* If the requested key is one more than the previous key, then ** try to get there using sqlite3BtreeNext() rather than a full ** binary search. This is an optimization only. The correct answer ** is still obtained without this case, only a little more slowly. */ if( pCur->info.nKey+1==intKey ){ *pRes = 0; rc = sqlite3BtreeNext(pCur, 0); if( rc==SQLITE_OK ){ getCellInfo(pCur); if( pCur->info.nKey==intKey ){ return SQLITE_OK; |
︙ | ︙ | |||
74767 74768 74769 74770 74771 74772 74773 | goto moveto_index_finish; } if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } | > > > | | | > > > > > | > > > > > > > > > > > > > > > > > > | 75586 75587 75588 75589 75590 75591 75592 75593 75594 75595 75596 75597 75598 75599 75600 75601 75602 75603 75604 75605 75606 75607 75608 75609 75610 75611 75612 75613 75614 75615 75616 75617 75618 75619 75620 75621 75622 75623 75624 75625 75626 75627 75628 75629 | goto moveto_index_finish; } if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); }else{ chldPg = get4byte(findCell(pPage, lwr)); } /* This block is similar to an in-lined version of: ** ** pCur->ix = (u16)lwr; ** rc = moveToChild(pCur, chldPg); ** if( rc ) break; */ pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->aiIdx[pCur->iPage] = (u16)lwr; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; rc = getAndInitPage(pCur->pBt, chldPg, &pCur->pPage, pCur->curPagerFlags); if( rc==SQLITE_OK && (pCur->pPage->nCell<1 || pCur->pPage->intKey!=pCur->curIntKey) ){ releasePage(pCur->pPage); rc = SQLITE_CORRUPT_PGNO(chldPg); } if( rc ){ pCur->pPage = pCur->apPage[--pCur->iPage]; break; } /* ***** End of in-lined moveToChild() call */ } moveto_index_finish: pCur->info.nSize = 0; assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); return rc; } |
︙ | ︙ | |||
75554 75555 75556 75557 75558 75559 75560 | ovflPgno = iNext; } return SQLITE_OK; } /* Call xParseCell to compute the size of a cell. If the cell contains ** overflow, then invoke cellClearOverflow to clear out that overflow. | | | 76399 76400 76401 76402 76403 76404 76405 76406 76407 76408 76409 76410 76411 76412 76413 | ovflPgno = iNext; } return SQLITE_OK; } /* Call xParseCell to compute the size of a cell. If the cell contains ** overflow, then invoke cellClearOverflow to clear out that overflow. ** Store the result code (SQLITE_OK or some error code) in rc. ** ** Implemented as macro to force inlining for performance. */ #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ pPage->xParseCell(pPage, pCell, &sInfo); \ if( sInfo.nLocal!=sInfo.nPayload ){ \ rc = clearCellOverflow(pPage, pCell, &sInfo); \ |
︙ | ︙ | |||
76170 76171 76172 76173 76174 76175 76176 | u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ assert( i<iEnd ); j = get2byte(&aData[hdr+5]); if( NEVER(j>(u32)usableSize) ){ j = 0; } memcpy(&pTmp[j], &aData[j], usableSize - j); | | | 77015 77016 77017 77018 77019 77020 77021 77022 77023 77024 77025 77026 77027 77028 77029 | u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ assert( i<iEnd ); j = get2byte(&aData[hdr+5]); if( NEVER(j>(u32)usableSize) ){ j = 0; } memcpy(&pTmp[j], &aData[j], usableSize - j); for(k=0; ALWAYS(k<NB*2) && pCArray->ixNx[k]<=i; k++){} pSrcEnd = pCArray->apEnd[k]; pData = pEnd; while( 1/*exit by break*/ ){ u8 *pCell = pCArray->apCell[i]; u16 sz = pCArray->szCell[i]; assert( sz>0 ); |
︙ | ︙ | |||
76233 76234 76235 76236 76237 76238 76239 | ** content area on page pPg. If the size of the content area is extended, ** *ppData is updated to point to the new start of the content area ** before returning. ** ** Finally, argument pBegin points to the byte immediately following the ** end of the space required by this page for the cell-pointer area (for ** all cells - not just those inserted by the current call). If the content | | | | 77078 77079 77080 77081 77082 77083 77084 77085 77086 77087 77088 77089 77090 77091 77092 77093 77094 77095 77096 77097 77098 77099 77100 77101 77102 77103 77104 77105 77106 77107 77108 77109 77110 77111 77112 | ** content area on page pPg. If the size of the content area is extended, ** *ppData is updated to point to the new start of the content area ** before returning. ** ** Finally, argument pBegin points to the byte immediately following the ** end of the space required by this page for the cell-pointer area (for ** all cells - not just those inserted by the current call). If the content ** area must be extended to before this point in order to accommodate all ** cells in apCell[], then the cells do not fit and non-zero is returned. */ static int pageInsertArray( MemPage *pPg, /* Page to add cells to */ u8 *pBegin, /* End of cell-pointer array */ u8 **ppData, /* IN/OUT: Page content-area pointer */ u8 *pCellptr, /* Pointer to cell-pointer area */ int iFirst, /* Index of first cell to add */ int nCell, /* Number of cells to add to pPg */ CellArray *pCArray /* Array of cells */ ){ int i = iFirst; /* Loop counter - cell index to insert */ u8 *aData = pPg->aData; /* Complete page */ u8 *pData = *ppData; /* Content area. A subset of aData[] */ int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ int k; /* Current slot in pCArray->apEnd[] */ u8 *pEnd; /* Maximum extent of cell data */ assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ if( iEnd<=iFirst ) return 0; for(k=0; ALWAYS(k<NB*2) && pCArray->ixNx[k]<=i ; k++){} pEnd = pCArray->apEnd[k]; while( 1 /*Exit by break*/ ){ int sz, rc; u8 *pSlot; assert( pCArray->szCell[i]!=0 ); sz = pCArray->szCell[i]; if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ |
︙ | ︙ | |||
76407 76408 76409 76410 76411 76412 76413 | } if( iNewEnd < iOldEnd ){ int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); assert( nCell>=nTail ); nCell -= nTail; } | | | 77252 77253 77254 77255 77256 77257 77258 77259 77260 77261 77262 77263 77264 77265 77266 | } if( iNewEnd < iOldEnd ){ int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); assert( nCell>=nTail ); nCell -= nTail; } pData = &aData[get2byte(&aData[hdr+5])]; if( pData<pBegin ) goto editpage_fail; if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail; /* Add cells to the start of the page */ if( iNew<iOld ){ int nAdd = MIN(nNew,iOld-iNew); assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); |
︙ | ︙ | |||
76548 76549 76550 76551 76552 76553 76554 | } pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; /* If this is an auto-vacuum database, update the pointer map ** with entries for the new page, and any pointer from the ** cell on the page to an overflow page. If either of these ** operations fails, the return code is set, but the contents | | | 77393 77394 77395 77396 77397 77398 77399 77400 77401 77402 77403 77404 77405 77406 77407 | } pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; /* If this is an auto-vacuum database, update the pointer map ** with entries for the new page, and any pointer from the ** cell on the page to an overflow page. If either of these ** operations fails, the return code is set, but the contents ** of the parent page are still manipulated by the code below. ** That is Ok, at this point the parent page is guaranteed to ** be marked as dirty. Returning an error code will cause a ** rollback, undoing any changes made to the parent page. */ if( ISAUTOVACUUM(pBt) ){ ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); if( szCell>pNew->minLocal ){ |
︙ | ︙ | |||
76824 76825 76826 76827 76828 76829 76830 | pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ if( rc==SQLITE_OK ){ | | | 77669 77670 77671 77672 77673 77674 77675 77676 77677 77678 77679 77680 77681 77682 77683 | pRight = &pParent->aData[pParent->hdrOffset+8]; }else{ pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); } pgno = get4byte(pRight); while( 1 ){ if( rc==SQLITE_OK ){ rc = getAndInitPage(pBt, pgno, &apOld[i], 0); } if( rc ){ memset(apOld, 0, (i+1)*sizeof(MemPage*)); goto balance_cleanup; } if( apOld[i]->nFree<0 ){ rc = btreeComputeFreeSpace(apOld[i]); |
︙ | ︙ | |||
77138 77139 77140 77141 77142 77143 77144 | szNew[i-1] = szLeft; if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } | | | 77983 77984 77985 77986 77987 77988 77989 77990 77991 77992 77993 77994 77995 77996 77997 | szNew[i-1] = szLeft; if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } /* Sanity check: For a non-corrupt database file one of the following ** must be true: ** (1) We found one or more cells (cntNew[0])>0), or ** (2) pPage is a virtual root page. A virtual root page is when ** the real root page is page 1 and we are the only child of ** that page. */ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); |
︙ | ︙ | |||
77363 77364 77365 77366 77367 77368 77369 | assert(leafCorrection==4); sz = pParent->xCellSize(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); | | | | 78208 78209 78210 78211 78212 78213 78214 78215 78216 78217 78218 78219 78220 78221 78222 78223 78224 | assert(leafCorrection==4); sz = pParent->xCellSize(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); for(k=0; ALWAYS(k<NB*2) && b.ixNx[k]<=j; k++){} pSrcEnd = b.apEnd[k]; if( SQLITE_OVERFLOW(pSrcEnd, pCell, pCell+sz) ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } rc = insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno); if( rc!=SQLITE_OK ) goto balance_cleanup; assert( sqlite3PagerIswriteable(pParent->pDbPage) ); } |
︙ | ︙ | |||
77399 77400 77401 77402 77403 77404 77405 77406 77407 77408 77409 77410 77411 77412 | ** step. On the upward pass, both conditions are always true, so the ** upwards pass simply processes pages that were missed on the downward ** pass. */ for(i=1-nNew; i<nNew; i++){ int iPg = i<0 ? -i : i; assert( iPg>=0 && iPg<nNew ); if( abDone[iPg] ) continue; /* Skip pages already processed */ if( i>=0 /* On the upwards pass, or... */ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ ){ int iNew; int iOld; int nNewCell; | > > | 78244 78245 78246 78247 78248 78249 78250 78251 78252 78253 78254 78255 78256 78257 78258 78259 | ** step. On the upward pass, both conditions are always true, so the ** upwards pass simply processes pages that were missed on the downward ** pass. */ for(i=1-nNew; i<nNew; i++){ int iPg = i<0 ? -i : i; assert( iPg>=0 && iPg<nNew ); assert( iPg>=1 || i>=0 ); assert( iPg<ArraySize(cntOld) ); if( abDone[iPg] ) continue; /* Skip pages already processed */ if( i>=0 /* On the upwards pass, or... */ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ ){ int iNew; int iOld; int nNewCell; |
︙ | ︙ | |||
77755 77756 77757 77758 77759 77760 77761 | u8 *pDest, /* Pointer to the place to start writing */ const BtreePayload *pX, /* Source of data to write */ int iOffset, /* Offset of first byte to write */ int iAmt /* Number of bytes to be written */ ){ int nData = pX->nData - iOffset; if( nData<=0 ){ | | | 78602 78603 78604 78605 78606 78607 78608 78609 78610 78611 78612 78613 78614 78615 78616 | u8 *pDest, /* Pointer to the place to start writing */ const BtreePayload *pX, /* Source of data to write */ int iOffset, /* Offset of first byte to write */ int iAmt /* Number of bytes to be written */ ){ int nData = pX->nData - iOffset; if( nData<=0 ){ /* Overwriting with zeros */ int i; for(i=0; i<iAmt && pDest[i]==0; i++){} if( i<iAmt ){ int rc = sqlite3PagerWrite(pPage->pDbPage); if( rc ) return rc; memset(pDest + i, 0, iAmt - i); } |
︙ | ︙ | |||
77791 77792 77793 77794 77795 77796 77797 | /* ** Overwrite the cell that cursor pCur is pointing to with fresh content ** contained in pX. In this variant, pCur is pointing to an overflow ** cell. */ static SQLITE_NOINLINE int btreeOverwriteOverflowCell( | | | 78638 78639 78640 78641 78642 78643 78644 78645 78646 78647 78648 78649 78650 78651 78652 | /* ** Overwrite the cell that cursor pCur is pointing to with fresh content ** contained in pX. In this variant, pCur is pointing to an overflow ** cell. */ static SQLITE_NOINLINE int btreeOverwriteOverflowCell( BtCursor *pCur, /* Cursor pointing to cell to overwrite */ const BtreePayload *pX /* Content to write into the cell */ ){ int iOffset; /* Next byte of pX->pData to write */ int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ int rc; /* Return code */ MemPage *pPage = pCur->pPage; /* Page being written */ BtShared *pBt; /* Btree */ |
︙ | ︙ | |||
78538 78539 78540 78541 78542 78543 78544 | ** BTREE_ZERODATA Used for SQL indices */ static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ BtShared *pBt = p->pBt; MemPage *pRoot; Pgno pgnoRoot; int rc; | | | 79385 79386 79387 79388 79389 79390 79391 79392 79393 79394 79395 79396 79397 79398 79399 | ** BTREE_ZERODATA Used for SQL indices */ static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ BtShared *pBt = p->pBt; MemPage *pRoot; Pgno pgnoRoot; int rc; int ptfFlags; /* Page-type flags for the root page of new table */ assert( sqlite3BtreeHoldsMutex(p) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); #ifdef SQLITE_OMIT_AUTOVACUUM rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
︙ | ︙ | |||
78707 78708 78709 78710 78711 78712 78713 | int hdr; CellInfo info; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } | | | 79554 79555 79556 79557 79558 79559 79560 79561 79562 79563 79564 79565 79566 79567 79568 | int hdr; CellInfo info; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, pgno, &pPage, 0); if( rc ) return rc; if( (pBt->openFlags & BTREE_SINGLE)==0 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) ){ rc = SQLITE_CORRUPT_BKPT; goto cleardatabasepage_out; } |
︙ | ︙ | |||
79373 79374 79375 79376 79377 79378 79379 | checkProgress(pCheck); if( pCheck->mxErr==0 ) goto end_of_check; pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage) ) return 0; pCheck->zPfx = "Tree %u page %u: "; | | | 80220 80221 80222 80223 80224 80225 80226 80227 80228 80229 80230 80231 80232 80233 80234 | checkProgress(pCheck); if( pCheck->mxErr==0 ) goto end_of_check; pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage) ) return 0; pCheck->zPfx = "Tree %u page %u: "; pCheck->v1 = iPage; if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ checkAppendMsg(pCheck, "unable to get the page. error code=%d", rc); goto end_of_check; } /* Clear MemPage.isInit to make sure the corruption detection code in |
︙ | ︙ | |||
79710 79711 79712 79713 79714 79715 79716 79717 79718 79719 79720 79721 79722 79723 | i64 notUsed; if( aRoot[i]==0 ) continue; #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); } #endif checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); } pBt->db->flags = savedDbFlags; /* Make sure every page in the file is referenced */ if( !bPartial ){ | > | 80557 80558 80559 80560 80561 80562 80563 80564 80565 80566 80567 80568 80569 80570 80571 | i64 notUsed; if( aRoot[i]==0 ) continue; #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); } #endif sCheck.v0 = aRoot[i]; checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); } pBt->db->flags = savedDbFlags; /* Make sure every page in the file is referenced */ if( !bPartial ){ |
︙ | ︙ | |||
81135 81136 81137 81138 81139 81140 81141 81142 81143 81144 81145 81146 81147 81148 | return sqlite3VdbeMemGrow(pMem, szNew, 0); } assert( (pMem->flags & MEM_Dyn)==0 ); pMem->z = pMem->zMalloc; pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); return SQLITE_OK; } /* ** It is already known that pMem contains an unterminated string. ** Add the zero terminator. ** ** Three bytes of zero are added. In this way, there is guaranteed ** to be a double-zero byte at an even byte boundary in order to | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 81983 81984 81985 81986 81987 81988 81989 81990 81991 81992 81993 81994 81995 81996 81997 81998 81999 82000 82001 82002 82003 82004 82005 82006 82007 82008 82009 82010 82011 82012 82013 82014 82015 82016 82017 82018 82019 82020 82021 82022 82023 82024 82025 82026 82027 82028 82029 82030 | return sqlite3VdbeMemGrow(pMem, szNew, 0); } assert( (pMem->flags & MEM_Dyn)==0 ); pMem->z = pMem->zMalloc; pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); return SQLITE_OK; } /* ** If pMem is already a string, detect if it is a zero-terminated ** string, or make it into one if possible, and mark it as such. ** ** This is an optimization. Correct operation continues even if ** this routine is a no-op. */ SQLITE_PRIVATE void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){ if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){ /* pMem must be a string, and it cannot be an ephemeral or static string */ return; } if( pMem->enc!=SQLITE_UTF8 ) return; if( NEVER(pMem->z==0) ) return; if( pMem->flags & MEM_Dyn ){ if( pMem->xDel==sqlite3_free && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1) ){ pMem->z[pMem->n] = 0; pMem->flags |= MEM_Term; return; } if( pMem->xDel==(void(*)(void*))sqlite3RCStrUnref ){ /* Blindly assume that all RCStr objects are zero-terminated */ pMem->flags |= MEM_Term; return; } }else if( pMem->szMalloc >= pMem->n+1 ){ pMem->z[pMem->n] = 0; pMem->flags |= MEM_Term; return; } } /* ** It is already known that pMem contains an unterminated string. ** Add the zero terminator. ** ** Three bytes of zero are added. In this way, there is guaranteed ** to be a double-zero byte at an even byte boundary in order to |
︙ | ︙ | |||
81397 81398 81399 81400 81401 81402 81403 | ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem *p){ assert( !VdbeMemDynamic(p) ); if( p->szMalloc ) vdbeMemClear(p); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 82279 82280 82281 82282 82283 82284 82285 82286 82287 82288 82289 82290 82291 82292 | ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. */ SQLITE_PRIVATE void sqlite3VdbeMemReleaseMalloc(Mem *p){ assert( !VdbeMemDynamic(p) ); if( p->szMalloc ) vdbeMemClear(p); } /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into an integer and return that. If pMem represents an |
︙ | ︙ | |||
81453 81454 81455 81456 81457 81458 81459 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & (MEM_Int|MEM_IntReal) ){ testcase( flags & MEM_IntReal ); return pMem->u.i; }else if( flags & MEM_Real ){ | | | 82305 82306 82307 82308 82309 82310 82311 82312 82313 82314 82315 82316 82317 82318 82319 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & (MEM_Int|MEM_IntReal) ){ testcase( flags & MEM_IntReal ); return pMem->u.i; }else if( flags & MEM_Real ){ return sqlite3RealToI64(pMem->u.r); }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ return memIntValue(pMem); }else{ return 0; } } |
︙ | ︙ | |||
81515 81516 81517 81518 81519 81520 81521 | assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_IntReal ){ MemSetTypeFlag(pMem, MEM_Int); }else{ | | | 82367 82368 82369 82370 82371 82372 82373 82374 82375 82376 82377 82378 82379 82380 82381 | assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_IntReal ){ MemSetTypeFlag(pMem, MEM_Int); }else{ i64 ix = sqlite3RealToI64(pMem->u.r); /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** |
︙ | ︙ | |||
81583 81584 81585 81586 81587 81588 81589 | } /* Convert a floating point value to its closest integer. Do so in ** a way that avoids 'outside the range of representable values' warnings ** from UBSAN. */ SQLITE_PRIVATE i64 sqlite3RealToI64(double r){ | | | | 82435 82436 82437 82438 82439 82440 82441 82442 82443 82444 82445 82446 82447 82448 82449 82450 | } /* Convert a floating point value to its closest integer. Do so in ** a way that avoids 'outside the range of representable values' warnings ** from UBSAN. */ SQLITE_PRIVATE i64 sqlite3RealToI64(double r){ if( r<-9223372036854774784.0 ) return SMALLEST_INT64; if( r>+9223372036854774784.0 ) return LARGEST_INT64; return (i64)r; } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** |
︙ | ︙ | |||
81655 81656 81657 81658 81659 81660 81661 81662 81663 81664 81665 81666 81667 81668 | break; } case SQLITE_AFF_REAL: { sqlite3VdbeMemRealify(pMem); break; } default: { assert( aff==SQLITE_AFF_TEXT ); assert( MEM_Str==(MEM_Blob>>3) ); pMem->flags |= (pMem->flags&MEM_Blob)>>3; sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1; | > | > > | 82507 82508 82509 82510 82511 82512 82513 82514 82515 82516 82517 82518 82519 82520 82521 82522 82523 82524 82525 82526 82527 82528 82529 82530 82531 | break; } case SQLITE_AFF_REAL: { sqlite3VdbeMemRealify(pMem); break; } default: { int rc; assert( aff==SQLITE_AFF_TEXT ); assert( MEM_Str==(MEM_Blob>>3) ); pMem->flags |= (pMem->flags&MEM_Blob)>>3; sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1; rc = sqlite3VdbeChangeEncoding(pMem, encoding); if( rc ) return rc; sqlite3VdbeMemZeroTerminateIfAble(pMem); } } return SQLITE_OK; } /* ** Initialize bulk memory to be a consistent Mem object. |
︙ | ︙ | |||
82185 82186 82187 82188 82189 82190 82191 82192 82193 82194 82195 82196 82197 82198 | return pVal->z; } if( pVal->flags&MEM_Null ){ return 0; } return valueToText(pVal, enc); } /* ** Create a new sqlite3_value object. */ SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ | > > > > > > > > > > > > > > > > > > | 83040 83041 83042 83043 83044 83045 83046 83047 83048 83049 83050 83051 83052 83053 83054 83055 83056 83057 83058 83059 83060 83061 83062 83063 83064 83065 83066 83067 83068 83069 83070 83071 | return pVal->z; } if( pVal->flags&MEM_Null ){ return 0; } return valueToText(pVal, enc); } /* Return true if sqlit3_value object pVal is a string or blob value ** that uses the destructor specified in the second argument. ** ** TODO: Maybe someday promote this interface into a published API so ** that third-party extensions can get access to it? */ SQLITE_PRIVATE int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){ if( ALWAYS(pVal!=0) && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0) && (pVal->flags & MEM_Dyn)!=0 && pVal->xDel==xFree ){ return 1; }else{ return 0; } } /* ** Create a new sqlite3_value object. */ SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ |
︙ | ︙ | |||
82253 82254 82255 82256 82257 82258 82259 82260 82261 82262 82263 82264 82265 82266 | } } if( pRec==0 ) return 0; p->ppRec[0] = pRec; } pRec->nField = p->iVal+1; return &pRec->aMem[p->iVal]; } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT4) */ return sqlite3ValueNew(db); } | > | 83126 83127 83128 83129 83130 83131 83132 83133 83134 83135 83136 83137 83138 83139 83140 | } } if( pRec==0 ) return 0; p->ppRec[0] = pRec; } pRec->nField = p->iVal+1; sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]); return &pRec->aMem[p->iVal]; } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT4) */ return sqlite3ValueNew(db); } |
︙ | ︙ | |||
83040 83041 83042 83043 83044 83045 83046 83047 83048 83049 83050 83051 83052 83053 83054 83055 83056 83057 | static void test_addop_breakpoint(int pc, Op *pOp){ static int n = 0; (void)pc; (void)pOp; n++; } #endif /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < < > > > | < | < > > | | 83914 83915 83916 83917 83918 83919 83920 83921 83922 83923 83924 83925 83926 83927 83928 83929 83930 83931 83932 83933 83934 83935 83936 83937 83938 83939 83940 83941 83942 83943 83944 83945 83946 83947 83948 83949 83950 83951 83952 83953 83954 83955 83956 83957 83958 83959 83960 83961 83962 83963 83964 83965 83966 83967 83968 83969 83970 83971 83972 83973 83974 83975 83976 83977 | static void test_addop_breakpoint(int pc, Op *pOp){ static int n = 0; (void)pc; (void)pOp; n++; } #endif /* ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the ** unusual case when we need to increase the size of the Vdbe.aOp[] array ** before adding the new opcode. */ static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ assert( p->nOpAlloc<=p->nOp ); if( growOpArray(p, 1) ) return 1; assert( p->nOpAlloc>p->nOp ); return sqlite3VdbeAddOp3(p, op, p1, p2, p3); } static SQLITE_NOINLINE int addOp4IntSlow( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); if( p->db->mallocFailed==0 ){ VdbeOp *pOp = &p->aOp[addr]; pOp->p4type = P4_INT32; pOp->p4.i = p4; } return addr; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2, p3, p4 Operands */ SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); } SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ int i; VdbeOp *pOp; i = p->nOp; assert( p->eVdbeState==VDBE_INIT_STATE ); |
︙ | ︙ | |||
83084 83085 83086 83087 83088 83089 83090 83091 83092 83093 83094 83095 83096 83097 83098 83099 83100 83101 83102 83103 83104 83105 83106 | pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | | < | < < < | 83986 83987 83988 83989 83990 83991 83992 83993 83994 83995 83996 83997 83998 83999 84000 84001 84002 84003 84004 84005 84006 84007 84008 84009 84010 84011 84012 84013 84014 84015 84016 84017 84018 84019 84020 84021 84022 84023 84024 84025 84026 84027 84028 84029 84030 84031 84032 84033 84034 84035 84036 84037 84038 84039 84040 84041 84042 84043 84044 84045 84046 84047 84048 84049 84050 84051 84052 84053 84054 84055 84056 84057 84058 84059 84060 84061 84062 84063 84064 84065 84066 84067 84068 84069 84070 84071 84072 | pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; /* Replicate this logic in sqlite3VdbeAddOp4Int() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp4Int() */ return i; } SQLITE_PRIVATE int sqlite3VdbeAddOp4Int( Vdbe *p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ){ int i; VdbeOp *pOp; i = p->nOp; if( p->nOpAlloc<=i ){ return addOp4IntSlow(p, op, p1, p2, p3, p4); } p->nOp++; pOp = &p->aOp[i]; assert( pOp!=0 ); pOp->opcode = (u8)op; pOp->p5 = 0; pOp->p1 = p1; pOp->p2 = p2; pOp->p3 = p3; pOp->p4.i = p4; pOp->p4type = P4_INT32; /* Replicate this logic in sqlite3VdbeAddOp3() ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOp->zComment = 0; #endif #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) pOp->nExec = 0; pOp->nCycle = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i, &p->aOp[i]); test_addop_breakpoint(i, &p->aOp[i]); } #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ** Replicate in sqlite3VdbeAddOp3() */ return i; } /* Generate code for an unconditional jump to instruction iDest */ SQLITE_PRIVATE int sqlite3VdbeGoto(Vdbe *p, int iDest){ return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); } |
︙ | ︙ | |||
83287 83288 83289 83290 83291 83292 83293 | iThis = v->nOp; addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, zMsg, P4_DYNAMIC); sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); if( bPush){ pParse->addrExplain = iThis; } | | | 84235 84236 84237 84238 84239 84240 84241 84242 84243 84244 84245 84246 84247 84248 84249 | iThis = v->nOp; addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, zMsg, P4_DYNAMIC); sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); if( bPush){ pParse->addrExplain = iThis; } sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0); } return addr; } /* ** Pop the EXPLAIN QUERY PLAN stack one level. */ |
︙ | ︙ | |||
83317 83318 83319 83320 83321 83322 83323 | int j; sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); sqlite3VdbeChangeP5(p, p5); for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); sqlite3MayAbort(p->pParse); } | < < < < < < < < < < < < < < < < < < < < | 84265 84266 84267 84268 84269 84270 84271 84272 84273 84274 84275 84276 84277 84278 | int j; sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); sqlite3VdbeChangeP5(p, p5); for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); sqlite3MayAbort(p->pParse); } /* Insert the end of a co-routine */ SQLITE_PRIVATE void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); /* Clear the temporary register cache, thereby ensuring that each ** co-routine has its own independent set of registers, because co-routines |
︙ | ︙ | |||
83649 83650 83651 83652 83653 83654 83655 | int *aLabel = pParse->aLabel; assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ p->readOnly = 1; p->bIsReader = 0; pOp = &p->aOp[p->nOp-1]; assert( p->aOp[0].opcode==OP_Init ); | | | 84577 84578 84579 84580 84581 84582 84583 84584 84585 84586 84587 84588 84589 84590 84591 | int *aLabel = pParse->aLabel; assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ p->readOnly = 1; p->bIsReader = 0; pOp = &p->aOp[p->nOp-1]; assert( p->aOp[0].opcode==OP_Init ); while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){ /* Only JUMP opcodes and the short list of special opcodes in the switch ** below need to be considered. The mkopcodeh.tcl generator script groups ** all these opcodes together near the front of the opcode list. Skip ** any opcode that does not need processing by virtual of the fact that ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. */ if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ |
︙ | ︙ | |||
84019 84020 84021 84022 84023 84024 84025 | int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ | | | | 84947 84948 84949 84950 84951 84952 84953 84954 84955 84956 84957 84958 84959 84960 84961 84962 | int ii; for(ii=p->nScan-1; ii>=0; ii--){ pScan = &p->aScan[ii]; if( pScan->addrExplain==addrExplain ) break; pScan = 0; } if( pScan ){ if( addrLoop>0 ) pScan->addrLoop = addrLoop; if( addrVisit>0 ) pScan->addrVisit = addrVisit; } } } #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */ /* |
︙ | ︙ | |||
84103 84104 84105 84106 84107 84108 84109 | sqlite3VdbeChangeP2(p, addr, p->nOp); } } /* ** If the input FuncDef structure is ephemeral, then free it. If | | | 85031 85032 85033 85034 85035 85036 85037 85038 85039 85040 85041 85042 85043 85044 85045 | sqlite3VdbeChangeP2(p, addr, p->nOp); } } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephemeral, then do nothing. */ static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ assert( db!=0 ); if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ sqlite3DbNNFreeNN(db, pDef); } } |
︙ | ︙ | |||
84266 84267 84268 84269 84270 84271 84272 | } if( N>0 ){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); } } #endif /* SQLITE_DEBUG */ | < | 85194 85195 85196 85197 85198 85199 85200 85201 85202 85203 85204 85205 85206 85207 | } if( N>0 ){ sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); } } #endif /* SQLITE_DEBUG */ /* ** Change the value of the P4 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. ** |
︙ | ︙ | |||
85188 85189 85190 85191 85192 85193 85194 | }else{ char *zP4 = sqlite3VdbeDisplayP4(db, pOp); if( p->explain==2 ){ sqlite3VdbeMemSetInt64(pMem, pOp->p1); sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); | | | | 86115 86116 86117 86118 86119 86120 86121 86122 86123 86124 86125 86126 86127 86128 86129 86130 86131 86132 86133 86134 86135 86136 86137 86138 86139 86140 86141 86142 86143 86144 86145 86146 86147 86148 | }else{ char *zP4 = sqlite3VdbeDisplayP4(db, pOp); if( p->explain==2 ){ sqlite3VdbeMemSetInt64(pMem, pOp->p1); sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==4 ); }else{ sqlite3VdbeMemSetInt64(pMem+0, i); sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), -1, SQLITE_UTF8, SQLITE_STATIC); sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); /* pMem+5 for p4 is done last */ sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS { char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); } #else sqlite3VdbeMemSetNull(pMem+7); #endif sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); assert( p->nResColumn==8 ); } p->pResultRow = pMem; if( db->mallocFailed ){ p->rc = SQLITE_NOMEM; rc = SQLITE_ERROR; }else{ p->rc = SQLITE_OK; |
︙ | ︙ | |||
85421 85422 85423 85424 85425 85426 85427 | x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ assert( x.nFree>=0 ); assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain ){ | < < < < < < < < | < < < < < < < < < | 86348 86349 86350 86351 86352 86353 86354 86355 86356 86357 86358 86359 86360 86361 86362 86363 86364 | x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ assert( x.nFree>=0 ); assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); resolveP2Values(p, &nArg); p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); if( pParse->explain ){ if( nMem<10 ) nMem = 10; p->explain = pParse->explain; p->nResColumn = 12 - 4*p->explain; } p->expired = 0; /* Memory for registers, parameters, cursor, etc, is allocated in one or two ** passes. On the first pass, we try to reuse unused memory at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second |
︙ | ︙ | |||
85491 85492 85493 85494 85495 85496 85497 85498 85499 85500 85501 85502 85503 85504 85505 85506 | /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); } SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ switch( pCx->eCurType ){ case CURTYPE_SORTER: { sqlite3VdbeSorterClose(p->db, pCx); break; } case CURTYPE_BTREE: { assert( pCx->uc.pCursor!=0 ); | > > > > > > > > > > > > > > > > | 86401 86402 86403 86404 86405 86406 86407 86408 86409 86410 86411 86412 86413 86414 86415 86416 86417 86418 86419 86420 86421 86422 86423 86424 86425 86426 86427 86428 86429 86430 86431 86432 | /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); } static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){ VdbeTxtBlbCache *pCache = pCx->pCache; assert( pCx->colCache ); pCx->colCache = 0; pCx->pCache = 0; if( pCache->pCValue ){ sqlite3RCStrUnref(pCache->pCValue); pCache->pCValue = 0; } sqlite3DbFree(p->db, pCache); sqlite3VdbeFreeCursorNN(p, pCx); } SQLITE_PRIVATE void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ if( pCx->colCache ){ freeCursorWithCache(p, pCx); return; } switch( pCx->eCurType ){ case CURTYPE_SORTER: { sqlite3VdbeSorterClose(p->db, pCx); break; } case CURTYPE_BTREE: { assert( pCx->uc.pCursor!=0 ); |
︙ | ︙ | |||
85593 85594 85595 85596 85597 85598 85599 | ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ int n; sqlite3 *db = p->db; | | | | | 86519 86520 86521 86522 86523 86524 86525 86526 86527 86528 86529 86530 86531 86532 86533 86534 86535 86536 86537 86538 | ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ int n; sqlite3 *db = p->db; if( p->nResAlloc ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbFree(db, p->aColName); } n = nResColumn*COLNAME_N; p->nResColumn = p->nResAlloc = (u16)nResColumn; p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); if( p->aColName==0 ) return; initMemArray(p->aColName, n, db, MEM_Null); } /* ** Set the name of the idx'th column to be returned by the SQL statement. |
︙ | ︙ | |||
85623 85624 85625 85626 85627 85628 85629 | int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ const char *zName, /* Pointer to buffer containing name */ void (*xDel)(void*) /* Memory management strategy for zName */ ){ int rc; Mem *pColName; | | | | 86549 86550 86551 86552 86553 86554 86555 86556 86557 86558 86559 86560 86561 86562 86563 86564 86565 86566 86567 86568 86569 86570 | int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ const char *zName, /* Pointer to buffer containing name */ void (*xDel)(void*) /* Memory management strategy for zName */ ){ int rc; Mem *pColName; assert( idx<p->nResAlloc ); assert( var<COLNAME_N ); if( p->db->mallocFailed ){ assert( !zName || xDel!=SQLITE_DYNAMIC ); return SQLITE_NOMEM_BKPT; } assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResAlloc]); rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); return rc; } /* ** A read or write transaction may or may not be active on database handle |
︙ | ︙ | |||
86143 86144 86145 86146 86147 86148 86149 86150 86151 86152 86153 86154 86155 86156 | ** is required. */ rc = vdbeCommit(db, p); } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)SQLITE_DeferFKs; | > | 87069 87070 87071 87072 87073 87074 87075 87076 87077 87078 87079 87080 87081 87082 87083 | ** is required. */ rc = vdbeCommit(db, p); } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ sqlite3SystemError(db, rc); p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~(u64)SQLITE_DeferFKs; |
︙ | ︙ | |||
86454 86455 86456 86457 86458 86459 86460 | ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( db!=0 ); assert( p->db==0 || p->db==db ); if( p->aColName ){ | | | 87381 87382 87383 87384 87385 87386 87387 87388 87389 87390 87391 87392 87393 87394 87395 | ** the database connection and frees the object itself. */ static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ SubProgram *pSub, *pNext; assert( db!=0 ); assert( p->db==0 || p->db==db ); if( p->aColName ){ releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); sqlite3DbNNFreeNN(db, p->aColName); } for(pSub=p->pProgram; pSub; pSub=pNext){ pNext = pSub->pNext; vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); sqlite3DbFree(db, pSub); } |
︙ | ︙ | |||
87054 87055 87056 87057 87058 87059 87060 87061 87062 87063 87064 87065 87066 87067 | ** always be greater than or equal to the amount of required key space. ** Use that approximation to avoid the more expensive call to ** sqlite3VdbeSerialTypeLen() in the common case. */ if( d1+(u64)serial_type1+2>(u64)nKey1 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 ){ break; } /* Extract the values to be compared. */ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d1 += sqlite3VdbeSerialTypeLen(serial_type1); | > > > > > > > > > | 87981 87982 87983 87984 87985 87986 87987 87988 87989 87990 87991 87992 87993 87994 87995 87996 87997 87998 87999 88000 88001 88002 88003 | ** always be greater than or equal to the amount of required key space. ** Use that approximation to avoid the more expensive call to ** sqlite3VdbeSerialTypeLen() in the common case. */ if( d1+(u64)serial_type1+2>(u64)nKey1 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 ){ if( serial_type1>=1 && serial_type1<=7 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8 && CORRUPT_DB ){ return 1; /* corrupt record not detected by ** sqlite3VdbeRecordCompareWithSkip(). Return true ** to avoid firing the assert() */ } break; } /* Extract the values to be compared. */ sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d1 += sqlite3VdbeSerialTypeLen(serial_type1); |
︙ | ︙ | |||
87497 87498 87499 87500 87501 87502 87503 | /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=10 ){ /* Serial types 12 or greater are strings and blobs (greater than ** numbers). Types 10 and 11 are currently "reserved for future ** use", so it doesn't really matter what the results of comparing | | | 88433 88434 88435 88436 88437 88438 88439 88440 88441 88442 88443 88444 88445 88446 88447 | /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=10 ){ /* Serial types 12 or greater are strings and blobs (greater than ** numbers). Types 10 and 11 are currently "reserved for future ** use", so it doesn't really matter what the results of comparing ** them to numeric values are. */ rc = serial_type==10 ? -1 : +1; }else if( serial_type==0 ){ rc = -1; }else{ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); if( serial_type==7 ){ if( mem1.u.r<pRhs->u.r ){ |
︙ | ︙ | |||
88754 88755 88756 88757 88758 88759 88760 88761 88762 88763 88764 88765 88766 88767 | if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; n &= ~(u64)1; } if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, enc, xDel); } } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, | > | 89690 89691 89692 89693 89694 89695 89696 89697 89698 89699 89700 89701 89702 89703 89704 | if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; n &= ~(u64)1; } if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, enc, xDel); sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut); } } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, |
︙ | ︙ | |||
89126 89127 89128 89129 89130 89131 89132 | return sqlite3_value_nochange(p->pOut); } /* ** The destructor function for a ValueList object. This needs to be ** a separate function, unknowable to the application, to ensure that ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not | | | 90063 90064 90065 90066 90067 90068 90069 90070 90071 90072 90073 90074 90075 90076 90077 | return sqlite3_value_nochange(p->pOut); } /* ** The destructor function for a ValueList object. This needs to be ** a separate function, unknowable to the application, to ensure that ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not ** preceded by activation of IN processing via sqlite3_vtab_int() do not ** try to access a fake ValueList object inserted by a hostile extension. */ SQLITE_PRIVATE void sqlite3VdbeValueListFree(void *pToDelete){ sqlite3_free(pToDelete); } /* |
︙ | ︙ | |||
89366 89367 89368 89369 89370 89371 89372 | #endif /* ** Return the number of columns in the result set for the statement pStmt. */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; | > | | 90303 90304 90305 90306 90307 90308 90309 90310 90311 90312 90313 90314 90315 90316 90317 90318 | #endif /* ** Return the number of columns in the result set for the statement pStmt. */ SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 ) return 0; return pVm->nResColumn; } /* ** Return the number of values available from the current row of the ** currently executing statement pStmt. */ SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ |
︙ | ︙ | |||
89455 89456 89457 89458 89459 89460 89461 | ** sqlite3_column_int() ** sqlite3_column_int64() ** sqlite3_column_text() ** sqlite3_column_text16() ** sqlite3_column_real() ** sqlite3_column_bytes() ** sqlite3_column_bytes16() | | | 90393 90394 90395 90396 90397 90398 90399 90400 90401 90402 90403 90404 90405 90406 90407 | ** sqlite3_column_int() ** sqlite3_column_int64() ** sqlite3_column_text() ** sqlite3_column_text16() ** sqlite3_column_real() ** sqlite3_column_bytes() ** sqlite3_column_bytes16() ** sqlite3_column_blob() */ static void columnMallocFailure(sqlite3_stmt *pStmt) { /* If malloc() failed during an encoding conversion within an ** sqlite3_column_XXX API, then set the return code of the statement to ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR ** and _finalize() will return NOMEM. |
︙ | ︙ | |||
89539 89540 89541 89542 89543 89544 89545 89546 89547 89548 89549 89550 89551 89552 | #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ int iType = sqlite3_value_type( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return iType; } /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > | 90477 90478 90479 90480 90481 90482 90483 90484 90485 90486 90487 90488 90489 90490 90491 90492 90493 90494 90495 90496 90497 90498 90499 90500 90501 90502 90503 90504 90505 90506 90507 90508 90509 90510 90511 90512 90513 90514 90515 90516 | #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ int iType = sqlite3_value_type( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return iType; } /* ** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN. */ static const char * const azExplainColNames8[] = { "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */ "id", "parent", "notused", "detail" /* EQP */ }; static const u16 azExplainColNames16data[] = { /* 0 */ 'a', 'd', 'd', 'r', 0, /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0, /* 12 */ 'p', '1', 0, /* 15 */ 'p', '2', 0, /* 18 */ 'p', '3', 0, /* 21 */ 'p', '4', 0, /* 24 */ 'p', '5', 0, /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0, /* 35 */ 'i', 'd', 0, /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0, /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0, /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0 }; static const u8 iExplainColNames16[] = { 0, 5, 12, 15, 18, 21, 24, 27, 35, 38, 45, 53 }; /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: ** |
︙ | ︙ | |||
89571 89572 89573 89574 89575 89576 89577 89578 89579 89580 89581 | sqlite3 *db; #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif ret = 0; p = (Vdbe *)pStmt; db = p->db; assert( db!=0 ); | > > | > > > > > > > > > > > > > | < < > > | 90535 90536 90537 90538 90539 90540 90541 90542 90543 90544 90545 90546 90547 90548 90549 90550 90551 90552 90553 90554 90555 90556 90557 90558 90559 90560 90561 90562 90563 90564 90565 90566 90567 90568 90569 90570 90571 90572 90573 90574 90575 90576 90577 90578 90579 90580 90581 90582 90583 90584 90585 90586 90587 90588 90589 90590 | sqlite3 *db; #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( N<0 ) return 0; ret = 0; p = (Vdbe *)pStmt; db = p->db; assert( db!=0 ); sqlite3_mutex_enter(db->mutex); if( p->explain ){ if( useType>0 ) goto columnName_end; n = p->explain==1 ? 8 : 4; if( N>=n ) goto columnName_end; if( useUtf16 ){ int i = iExplainColNames16[N + 8*p->explain - 8]; ret = (void*)&azExplainColNames16data[i]; }else{ ret = (void*)azExplainColNames8[N + 8*p->explain - 8]; } goto columnName_end; } n = p->nResColumn; if( N<n ){ u8 prior_mallocFailed = db->mallocFailed; N += useType*n; #ifndef SQLITE_OMIT_UTF16 if( useUtf16 ){ ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]); }else #endif { ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]); } /* A malloc may have failed inside of the _text() call. If this ** is the case, clear the mallocFailed flag and return NULL. */ assert( db->mallocFailed==0 || db->mallocFailed==1 ); if( db->mallocFailed > prior_mallocFailed ){ sqlite3OomClear(db); ret = 0; } } columnName_end: sqlite3_mutex_leave(db->mutex); return ret; } /* ** Return the name of the Nth column of the result set returned by SQL ** statement pStmt. */ |
︙ | ︙ | |||
89690 89691 89692 89693 89694 89695 89696 | /******************************* sqlite3_bind_ *************************** ** ** Routines used to attach values to wildcards in a compiled SQL statement. */ /* ** Unbind the value bound to variable i in virtual machine p. This is the ** the same as binding a NULL value to the column. If the "i" parameter is | | | 90669 90670 90671 90672 90673 90674 90675 90676 90677 90678 90679 90680 90681 90682 90683 | /******************************* sqlite3_bind_ *************************** ** ** Routines used to attach values to wildcards in a compiled SQL statement. */ /* ** Unbind the value bound to variable i in virtual machine p. This is the ** the same as binding a NULL value to the column. If the "i" parameter is ** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK. ** ** A successful evaluation of this routine acquires the mutex on p. ** the mutex is released if any kind of error occurs. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ |
︙ | ︙ | |||
90053 90054 90055 90056 90057 90058 90059 90060 90061 90062 90063 90064 90065 90066 | /* ** Return 1 if the statement is an EXPLAIN and return 2 if the ** statement is an EXPLAIN QUERY PLAN */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->explain : 0; } /* ** Return true if the prepared statement is in need of being reset. */ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ Vdbe *v = (Vdbe*)pStmt; return v!=0 && v->eVdbeState==VDBE_RUN_STATE; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 91032 91033 91034 91035 91036 91037 91038 91039 91040 91041 91042 91043 91044 91045 91046 91047 91048 91049 91050 91051 91052 91053 91054 91055 91056 91057 91058 91059 91060 91061 91062 91063 91064 91065 91066 91067 91068 91069 91070 91071 91072 91073 91074 91075 91076 91077 91078 | /* ** Return 1 if the statement is an EXPLAIN and return 2 if the ** statement is an EXPLAIN QUERY PLAN */ SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->explain : 0; } /* ** Set the explain mode for a statement. */ SQLITE_API int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){ Vdbe *v = (Vdbe*)pStmt; int rc; sqlite3_mutex_enter(v->db->mutex); if( ((int)v->explain)==eMode ){ rc = SQLITE_OK; }else if( eMode<0 || eMode>2 ){ rc = SQLITE_ERROR; }else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ rc = SQLITE_ERROR; }else if( v->eVdbeState!=VDBE_READY_STATE ){ rc = SQLITE_BUSY; }else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){ /* No reprepare necessary */ v->explain = eMode; rc = SQLITE_OK; }else{ v->explain = eMode; rc = sqlite3Reprepare(v); v->haveEqpOps = eMode==2; } if( v->explain ){ v->nResColumn = 12 - 4*v->explain; }else{ v->nResColumn = v->nResAlloc; } sqlite3_mutex_leave(v->db->mutex); return rc; } /* ** Return true if the prepared statement is in need of being reset. */ SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ Vdbe *v = (Vdbe*)pStmt; return v!=0 && v->eVdbeState==VDBE_RUN_STATE; |
︙ | ︙ | |||
91293 91294 91295 91296 91297 91298 91299 91300 91301 91302 91303 91304 91305 91306 | } sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); for(j=0; j<25 && j<pMem->n; j++){ c = pMem->z[j]; sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); } sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); } } #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: | > > > | 92305 92306 92307 92308 92309 92310 92311 92312 92313 92314 92315 92316 92317 92318 92319 92320 92321 | } sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); for(j=0; j<25 && j<pMem->n; j++){ c = pMem->z[j]; sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); } sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); if( f & MEM_Term ){ sqlite3_str_appendf(pStr, "(0-term)"); } } } #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: |
︙ | ︙ | |||
91428 91429 91430 91431 91432 91433 91434 91435 91436 91437 91438 91439 91440 91441 | ** though, at least, those hashes are different from each other and ** from NULL. */ h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); } } return h; } /* ** Return the symbolic name for the data type of a pMem */ static const char *vdbeMemTypeName(Mem *pMem){ static const char *azTypes[] = { /* SQLITE_INTEGER */ "INT", | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 92443 92444 92445 92446 92447 92448 92449 92450 92451 92452 92453 92454 92455 92456 92457 92458 92459 92460 92461 92462 92463 92464 92465 92466 92467 92468 92469 92470 92471 92472 92473 92474 92475 92476 92477 92478 92479 92480 92481 92482 92483 92484 92485 92486 92487 92488 92489 92490 92491 92492 92493 92494 92495 92496 92497 92498 92499 92500 92501 92502 92503 92504 92505 92506 92507 92508 92509 92510 92511 92512 92513 92514 92515 92516 92517 92518 92519 92520 92521 92522 92523 92524 92525 92526 92527 92528 92529 92530 92531 92532 92533 92534 92535 92536 92537 92538 92539 92540 92541 92542 92543 | ** though, at least, those hashes are different from each other and ** from NULL. */ h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); } } return h; } /* ** For OP_Column, factor out the case where content is loaded from ** overflow pages, so that the code to implement this case is separate ** the common case where all content fits on the page. Factoring out ** the code reduces register pressure and helps the common case ** to run faster. */ static SQLITE_NOINLINE int vdbeColumnFromOverflow( VdbeCursor *pC, /* The BTree cursor from which we are reading */ int iCol, /* The column to read */ int t, /* The serial-type code for the column value */ i64 iOffset, /* Offset to the start of the content value */ u32 cacheStatus, /* Current Vdbe.cacheCtr value */ u32 colCacheCtr, /* Current value of the column cache counter */ Mem *pDest /* Store the value into this register. */ ){ int rc; sqlite3 *db = pDest->db; int encoding = pDest->enc; int len = sqlite3VdbeSerialTypeLen(t); assert( pC->eCurType==CURTYPE_BTREE ); if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG; if( len > 4000 && pC->pKeyInfo==0 ){ /* Cache large column values that are on overflow pages using ** an RCStr (reference counted string) so that if they are reloaded, ** that do not have to be copied a second time. The overhead of ** creating and managing the cache is such that this is only ** profitable for larger TEXT and BLOB values. ** ** Only do this on table-btrees so that writes to index-btrees do not ** need to clear the cache. This buys performance in the common case ** in exchange for generality. */ VdbeTxtBlbCache *pCache; char *pBuf; if( pC->colCache==0 ){ pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) ); if( pC->pCache==0 ) return SQLITE_NOMEM; pC->colCache = 1; } pCache = pC->pCache; if( pCache->pCValue==0 || pCache->iCol!=iCol || pCache->cacheStatus!=cacheStatus || pCache->colCacheCtr!=colCacheCtr || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor) ){ if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue); pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 ); if( pBuf==0 ) return SQLITE_NOMEM; rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf); if( rc ) return rc; pBuf[len] = 0; pBuf[len+1] = 0; pBuf[len+2] = 0; pCache->iCol = iCol; pCache->cacheStatus = cacheStatus; pCache->colCacheCtr = colCacheCtr; pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor); }else{ pBuf = pCache->pCValue; } assert( t>=12 ); sqlite3RCStrRef(pBuf); if( t&1 ){ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding, (void(*)(void*))sqlite3RCStrUnref); pDest->flags |= MEM_Term; }else{ rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0, (void(*)(void*))sqlite3RCStrUnref); } }else{ rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest); if( rc ) return rc; sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); if( (t&1)!=0 && encoding==SQLITE_UTF8 ){ pDest->z[len] = 0; pDest->flags |= MEM_Term; } } pDest->flags &= ~MEM_Ephem; return rc; } /* ** Return the symbolic name for the data type of a pMem */ static const char *vdbeMemTypeName(Mem *pMem){ static const char *azTypes[] = { /* SQLITE_INTEGER */ "INT", |
︙ | ︙ | |||
91471 91472 91473 91474 91475 91476 91477 91478 91479 91480 91481 91482 91483 91484 | u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) u64 *pnCycle = 0; int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; #endif /*** INSERT STACK UNION HERE ***/ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ | > | 92573 92574 92575 92576 92577 92578 92579 92580 92581 92582 92583 92584 92585 92586 92587 | u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ u32 colCacheCtr = 0; /* Column cache counter */ #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) u64 *pnCycle = 0; int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; #endif /*** INSERT STACK UNION HERE ***/ assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ |
︙ | ︙ | |||
91666 91667 91668 91669 91670 91671 91672 | ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ #ifdef SQLITE_DEBUG | | | | 92769 92770 92771 92772 92773 92774 92775 92776 92777 92778 92779 92780 92781 92782 92783 92784 | ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ #ifdef SQLITE_DEBUG /* In debugging mode, when the p5 flags is set on an OP_Goto, that ** means we should really jump back to the preceding OP_ReleaseReg ** instruction. */ if( pOp->p5 ){ assert( pOp->p2 < (int)(pOp - aOp) ); assert( pOp->p2 > 1 ); pOp = &aOp[pOp->p2 - 2]; assert( pOp[1].opcode==OP_ReleaseReg ); goto check_for_interrupt; |
︙ | ︙ | |||
91875 91876 91877 91878 91879 91880 91881 | ** VDBE, but do not rollback the transaction. ** ** If P4 is not null then it is an error message string. ** ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. ** ** 0: (no change) | | | 92978 92979 92980 92981 92982 92983 92984 92985 92986 92987 92988 92989 92990 92991 92992 | ** VDBE, but do not rollback the transaction. ** ** If P4 is not null then it is an error message string. ** ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. ** ** 0: (no change) ** 1: NOT NULL constraint failed: P4 ** 2: UNIQUE constraint failed: P4 ** 3: CHECK constraint failed: P4 ** 4: FOREIGN KEY constraint failed: P4 ** ** If P5 is not zero and P4 is NULL, then everything after the ":" is ** omitted. ** |
︙ | ︙ | |||
93006 93007 93008 93009 93010 93011 93012 | /* Opcode: ElseEq * P2 * * * ** ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There ** can be zero or more OP_ReleaseReg opcodes intervening, but no other ** opcodes are allowed to occur between this instruction and the previous ** OP_Lt or OP_Gt. ** | | | | | | 94109 94110 94111 94112 94113 94114 94115 94116 94117 94118 94119 94120 94121 94122 94123 94124 94125 94126 | /* Opcode: ElseEq * P2 * * * ** ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There ** can be zero or more OP_ReleaseReg opcodes intervening, but no other ** opcodes are allowed to occur between this instruction and the previous ** OP_Lt or OP_Gt. ** ** If the result of an OP_Eq comparison on the same two operands as ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If ** the result of an OP_Eq comparison on the two previous operands ** would have been false or NULL, then fall through. */ case OP_ElseEq: { /* same as TK_ESCAPE, jump */ #ifdef SQLITE_DEBUG /* Verify the preconditions of this opcode - that it follows an OP_Lt or ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ int iAddr; |
︙ | ︙ | |||
93136 93137 93138 93139 93140 93141 93142 | assert( pOp[1].opcode==OP_Jump ); break; } /* Opcode: Jump P1 P2 P3 * * ** ** Jump to the instruction at address P1, P2, or P3 depending on whether | | | 94239 94240 94241 94242 94243 94244 94245 94246 94247 94248 94249 94250 94251 94252 94253 | assert( pOp[1].opcode==OP_Jump ); break; } /* Opcode: Jump P1 P2 P3 * * ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than, ** equal to, or greater than the P2 vector, respectively. ** ** This opcode must immediately follow an OP_Compare opcode. */ case OP_Jump: { /* jump */ assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); assert( iCompareIsInit ); |
︙ | ︙ | |||
93439 93440 93441 93442 93443 93444 93445 | } break; } /* Opcode: ZeroOrNull P1 P2 P3 * * ** Synopsis: r[P2] = 0 OR NULL ** | | | 94542 94543 94544 94545 94546 94547 94548 94549 94550 94551 94552 94553 94554 94555 94556 | } break; } /* Opcode: ZeroOrNull P1 P2 P3 * * ** Synopsis: r[P2] = 0 OR NULL ** ** If both registers P1 and P3 are NOT NULL, then store a zero in ** register P2. If either registers P1 or P3 are NULL then put ** a NULL in register P2. */ case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ if( (aMem[pOp->p1].flags & MEM_Null)!=0 || (aMem[pOp->p3].flags & MEM_Null)!=0 ){ |
︙ | ︙ | |||
93793 93794 93795 93796 93797 93798 93799 93800 93801 | } memcpy(pDest->z, zData, len); pDest->z[len] = 0; pDest->z[len+1] = 0; pDest->flags = aFlag[t&1]; } }else{ pDest->enc = encoding; /* This branch happens only when content is on overflow pages */ | > > > | | > > | > > > > | < | < < > | 94896 94897 94898 94899 94900 94901 94902 94903 94904 94905 94906 94907 94908 94909 94910 94911 94912 94913 94914 94915 94916 94917 94918 94919 94920 94921 94922 94923 94924 94925 94926 94927 94928 94929 94930 94931 94932 94933 94934 94935 94936 94937 94938 94939 94940 94941 94942 | } memcpy(pDest->z, zData, len); pDest->z[len] = 0; pDest->z[len+1] = 0; pDest->flags = aFlag[t&1]; } }else{ u8 p5; pDest->enc = encoding; assert( pDest->db==db ); /* This branch happens only when content is on overflow pages */ if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0 && (p5==OPFLAG_TYPEOFARG || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG)) ) ) || sqlite3VdbeSerialTypeLen(t)==0 ){ /* Content is irrelevant for ** 1. the typeof() function, ** 2. the length(X) function if X is a blob, and ** 3. if the content length is zero. ** So we might as well use bogus content rather than reading ** content from disk. ** ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the ** buffer passed to it, debugging function VdbeMemPrettyPrint() may ** read more. Use the global constant sqlite3CtypeMap[] as the array, ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) ** and it begins with a bunch of zeros. */ sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); }else{ rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], p->cacheCtr, colCacheCtr, pDest); if( rc ){ if( rc==SQLITE_NOMEM ) goto no_mem; if( rc==SQLITE_TOOBIG ) goto too_big; goto abort_due_to_error; } } } op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; |
︙ | ︙ | |||
95102 95103 95104 95105 95106 95107 95108 | assert( pOp->opcode==OP_OpenEphemeral ); assert( aMem[pOp->p3].flags & MEM_Null ); aMem[pOp->p3].n = 0; aMem[pOp->p3].z = ""; } pCx = p->apCsr[pOp->p1]; if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ | | | 96212 96213 96214 96215 96216 96217 96218 96219 96220 96221 96222 96223 96224 96225 96226 | assert( pOp->opcode==OP_OpenEphemeral ); assert( aMem[pOp->p3].flags & MEM_Null ); aMem[pOp->p3].n = 0; aMem[pOp->p3].z = ""; } pCx = p->apCsr[pOp->p1]; if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ /* If the ephemeral table is already open and has no duplicates from ** OP_OpenDup, then erase all existing content so that the table is ** empty again, rather than creating a new table. */ assert( pCx->isEphemeral ); pCx->seqCount = 0; pCx->cacheStatus = CACHE_STALE; rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); }else{ |
︙ | ︙ | |||
95593 95594 95595 95596 95597 95598 95599 | ** on the cursor between 1 and This.P1 times. ** ** The This.P5 parameter is a flag that indicates what to do if the ** cursor ends up pointing at a valid row that is past the target ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 ** case occurs when there are no inequality constraints to the right of | | | | 96703 96704 96705 96706 96707 96708 96709 96710 96711 96712 96713 96714 96715 96716 96717 96718 96719 96720 96721 96722 96723 96724 96725 | ** on the cursor between 1 and This.P1 times. ** ** The This.P5 parameter is a flag that indicates what to do if the ** cursor ends up pointing at a valid row that is past the target ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 ** case occurs when there are no inequality constraints to the right of ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case ** occurs when there are inequality constraints to the right of the IN ** operator. In that case, the This.P2 will point either directly to or ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for ** loop terminate. ** ** Possible outcomes from this opcode:<ol> ** ** <li> If the cursor is initially not pointed to any valid row, then ** fall through into the subsequent OP_SeekGE opcode. ** ** <li> If the cursor is left pointing to a row that is before the target ** row, even after making as many as This.P1 calls to ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. ** ** <li> If the cursor is left pointing at the target row, either because it |
︙ | ︙ | |||
95833 95834 95835 95836 95837 95838 95839 | ** ** Register P3 is the first of P4 registers that form an unpacked ** record. Cursor P1 is an index btree. P2 is a jump destination. ** In other words, the operands to this opcode are the same as the ** operands to OP_NotFound and OP_IdxGT. ** ** This opcode is an optimization attempt only. If this opcode always | | | | 96943 96944 96945 96946 96947 96948 96949 96950 96951 96952 96953 96954 96955 96956 96957 96958 96959 96960 96961 96962 96963 | ** ** Register P3 is the first of P4 registers that form an unpacked ** record. Cursor P1 is an index btree. P2 is a jump destination. ** In other words, the operands to this opcode are the same as the ** operands to OP_NotFound and OP_IdxGT. ** ** This opcode is an optimization attempt only. If this opcode always ** falls through, the correct answer is still obtained, but extra work ** is performed. ** ** A value of N in the seekHit flag of cursor P1 means that there exists ** a key P3:N that will match some record in the index. We want to know ** if it is possible for a record P3:P4 to match some record in the ** index. If it is not possible, we can skip some work. So if seekHit ** is less than P4, attempt to find out if a match is possible by running ** OP_NotFound. ** ** This opcode is used in IN clause processing for a multi-column key. ** If an IN clause is attached to an element of the key other than the ** left-most element, and if there are no matches on the most recent ** seek over the whole key, then it might be that one of the key element |
︙ | ︙ | |||
96351 96352 96353 96354 96355 96356 96357 96358 96359 96360 96361 96362 96363 96364 | assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), seekResult ); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc ) goto abort_due_to_error; if( pTab ){ assert( db->xUpdateCallback!=0 ); assert( pTab->aCol!=0 ); db->xUpdateCallback(db->pUpdateArg, | > | 97461 97462 97463 97464 97465 97466 97467 97468 97469 97470 97471 97472 97473 97474 97475 | assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), seekResult ); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; colCacheCtr++; /* Invoke the update-hook if required. */ if( rc ) goto abort_due_to_error; if( pTab ){ assert( db->xUpdateCallback!=0 ); assert( pTab->aCol!=0 ); db->xUpdateCallback(db->pUpdateArg, |
︙ | ︙ | |||
96404 96405 96406 96407 96408 96409 96410 | ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. As a result, in this case ** it is ok to delete a record from within a Next loop. If ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be ** left in an undefined state. ** ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this | | | | | | 97515 97516 97517 97518 97519 97520 97521 97522 97523 97524 97525 97526 97527 97528 97529 97530 97531 97532 | ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. As a result, in this case ** it is ok to delete a record from within a Next loop. If ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be ** left in an undefined state. ** ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this ** delete is one of several associated with deleting a table row and ** all its associated index entries. Exactly one of those deletes is ** the "primary" delete. The others are all on OPFLAG_FORDELETE ** cursors or else are marked with the AUXDELETE flag. ** ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row ** change count is incremented (otherwise not). ** ** P1 must not be pseudo-table. It has to be a real table with ** multiple rows. ** |
︙ | ︙ | |||
96511 96512 96513 96514 96515 96516 96517 96518 96519 96520 96521 96522 96523 96524 | nExtraDelete--; } } #endif rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; if( rc ) goto abort_due_to_error; /* Invoke the update-hook if required. */ if( opflags & OPFLAG_NCHANGE ){ p->nChange++; if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ | > | 97622 97623 97624 97625 97626 97627 97628 97629 97630 97631 97632 97633 97634 97635 97636 | nExtraDelete--; } } #endif rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); pC->cacheStatus = CACHE_STALE; colCacheCtr++; pC->seekResult = 0; if( rc ) goto abort_due_to_error; /* Invoke the update-hook if required. */ if( opflags & OPFLAG_NCHANGE ){ p->nChange++; if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ |
︙ | ︙ | |||
96578 96579 96580 96581 96582 96583 96584 | /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. ** Then clear the column header cache on cursor P3. ** | | | | 97690 97691 97692 97693 97694 97695 97696 97697 97698 97699 97700 97701 97702 97703 97704 97705 97706 97707 97708 97709 97710 | /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. ** Then clear the column header cache on cursor P3. ** ** This opcode is normally used to move a record out of the sorter and into ** a register that is the source for a pseudo-table cursor created using ** OpenPseudo. That pseudo-table cursor is the one that is identified by ** parameter P3. Clearing the P3 column cache as part of this opcode saves ** us from having to issue a separate NullRow instruction to clear that cache. */ case OP_SorterData: { /* ncycle */ VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterRowkey(pC, pOut); assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); |
︙ | ︙ | |||
96859 96860 96861 96862 96863 96864 96865 | ** Sorting is accomplished by writing records into a sorting index, ** then rewinding that index and playing it back from beginning to ** end. We use the OP_Sort opcode instead of OP_Rewind to do the ** rewinding so that the global variable will be incremented and ** regression tests can determine whether or not the optimizer is ** correctly optimizing out sorts. */ | | | | 97971 97972 97973 97974 97975 97976 97977 97978 97979 97980 97981 97982 97983 97984 97985 97986 | ** Sorting is accomplished by writing records into a sorting index, ** then rewinding that index and playing it back from beginning to ** end. We use the OP_Sort opcode instead of OP_Rewind to do the ** rewinding so that the global variable will be incremented and ** regression tests can determine whether or not the optimizer is ** correctly optimizing out sorts. */ case OP_SorterSort: /* jump ncycle */ case OP_Sort: { /* jump ncycle */ #ifdef SQLITE_TEST sqlite3_sort_count++; sqlite3_search_count--; #endif p->aCounter[SQLITE_STMTSTATUS_SORT]++; /* Fall through into OP_Rewind */ /* no break */ deliberate_fall_through |
︙ | ︙ | |||
97387 97388 97389 97390 97391 97392 97393 | /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P3==0. If | | | 98499 98500 98501 98502 98503 98504 98505 98506 98507 98508 98509 98510 98511 98512 98513 | /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. ** ** The table being destroyed is in the main database file if P3==0. If ** P3==1 then the table to be destroyed is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If AUTOVACUUM is enabled then it is possible that another root page ** might be moved into the newly deleted root page in order to keep all ** root pages contiguous at the beginning of the database. The former ** value of the root page that moved - its value before the move occurred - ** is stored in register P2. If no page movement was required (because the |
︙ | ︙ | |||
97447 97448 97449 97450 97451 97452 97453 | /* Opcode: Clear P1 P2 P3 ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** | | | | 98559 98560 98561 98562 98563 98564 98565 98566 98567 98568 98569 98570 98571 98572 98573 98574 | /* Opcode: Clear P1 P2 P3 ** ** Delete all contents of the database table or index whose root page ** in the database file is given by P1. But, unlike Destroy, do not ** remove the table or index from the database file. ** ** The table being cleared is in the main database file if P2==0. If ** P2==1 then the table to be cleared is in the auxiliary database file ** that is used to store tables create using CREATE TEMPORARY TABLE. ** ** If the P3 value is non-zero, then the row change count is incremented ** by the number of rows in the table being cleared. If P3 is greater ** than zero, then the value stored in register P3 is also incremented ** by the number of rows in the table being cleared. ** |
︙ | ︙ | |||
98274 98275 98276 98277 98278 98279 98280 | pMem->uTemp = 0x1122e0e3; } #endif /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it | | | 99386 99387 99388 99389 99390 99391 99392 99393 99394 99395 99396 99397 99398 99399 99400 | pMem->uTemp = 0x1122e0e3; } #endif /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relevant parts of the sqlite3_context object */ if( pCtx->pMem != pMem ){ pCtx->pMem = pMem; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } #ifdef SQLITE_DEBUG for(i=0; i<pCtx->argc; i++){ |
︙ | ︙ | |||
99152 99153 99154 99155 99156 99157 99158 | ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** This opcode works exactly like OP_Function. The only difference is in ** its name. This opcode is used in places where the function must be ** purely non-deterministic. Some built-in date/time functions can be | | | | 100264 100265 100266 100267 100268 100269 100270 100271 100272 100273 100274 100275 100276 100277 100278 100279 100280 100281 100282 100283 100284 100285 100286 100287 100288 100289 100290 100291 100292 100293 100294 100295 100296 | ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. ** ** This opcode works exactly like OP_Function. The only difference is in ** its name. This opcode is used in places where the function must be ** purely non-deterministic. Some built-in date/time functions can be ** either deterministic of non-deterministic, depending on their arguments. ** When those function are used in a non-deterministic way, they will check ** to see if they were called using OP_PureFunc instead of OP_Function, and ** if they were, they throw an error. ** ** See also: AggStep, AggFinal, Function */ case OP_PureFunc: /* group */ case OP_Function: { /* group */ int i; sqlite3_context *pCtx; assert( pOp->p4type==P4_FUNCCTX ); pCtx = pOp->p4.pCtx; /* If this function is inside of a trigger, the register array in aMem[] ** might change from one evaluation to the next. The next block of code ** checks to see if the register array has changed, and if so it ** reinitializes the relevant parts of the sqlite3_context object */ pOut = &aMem[pOp->p3]; if( pCtx->pOut != pOut ){ pCtx->pVdbe = p; pCtx->pOut = pOut; pCtx->enc = encoding; for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; } |
︙ | ︙ | |||
99246 99247 99248 99249 99250 99251 99252 | int ii; for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif | | | 100358 100359 100360 100361 100362 100363 100364 100365 100366 100367 100368 100369 100370 100371 100372 | int ii; for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif h %= (pIn1->n*8); pIn1->z[h/8] |= 1<<(h&7); break; } /* Opcode: Filter P1 P2 P3 P4 * ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 ** |
︙ | ︙ | |||
99282 99283 99284 99285 99286 99287 99288 | int ii; for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif | | | 100394 100395 100396 100397 100398 100399 100400 100401 100402 100403 100404 100405 100406 100407 100408 | int ii; for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ registerTrace(ii, &aMem[ii]); } printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); } #endif h %= (pIn1->n*8); if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ VdbeBranchTaken(1, 2); p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; goto jump_to_p2; }else{ p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; VdbeBranchTaken(0, 2); |
︙ | ︙ | |||
99534 99535 99536 99537 99538 99539 99540 | registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); } if( opProperty & OPFLG_OUT3 ){ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); } if( opProperty==0xff ){ /* Never happens. This code exists to avoid a harmless linkage | | | 100646 100647 100648 100649 100650 100651 100652 100653 100654 100655 100656 100657 100658 100659 100660 | registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); } if( opProperty & OPFLG_OUT3 ){ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); } if( opProperty==0xff ){ /* Never happens. This code exists to avoid a harmless linkage ** warning about sqlite3VdbeRegisterDump() being defined but not ** used. */ sqlite3VdbeRegisterDump(p); } } #endif /* SQLITE_DEBUG */ #endif /* NDEBUG */ } /* The end of the for(;;) loop the loops through opcodes */ |
︙ | ︙ | |||
99990 99991 99992 99993 99994 99995 99996 | blob_open_out: if( rc==SQLITE_OK && db->mallocFailed==0 ){ *ppBlob = (sqlite3_blob *)pBlob; }else{ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } | | | 101102 101103 101104 101105 101106 101107 101108 101109 101110 101111 101112 101113 101114 101115 101116 | blob_open_out: if( rc==SQLITE_OK && db->mallocFailed==0 ){ *ppBlob = (sqlite3_blob *)pBlob; }else{ if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt); sqlite3DbFree(db, pBlob); } sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr); sqlite3DbFree(db, zErr); sqlite3ParseObjectReset(&sParse); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
100149 100150 100151 100152 100153 100154 100155 | */ rc = SQLITE_ABORT; }else{ char *zErr; ((Vdbe*)p->pStmt)->rc = SQLITE_OK; rc = blobSeekToRow(p, iRow, &zErr); if( rc!=SQLITE_OK ){ | | | 101261 101262 101263 101264 101265 101266 101267 101268 101269 101270 101271 101272 101273 101274 101275 | */ rc = SQLITE_ABORT; }else{ char *zErr; ((Vdbe*)p->pStmt)->rc = SQLITE_OK; rc = blobSeekToRow(p, iRow, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorWithMsg(db, rc, (zErr ? "%s" : (char*)0), zErr); sqlite3DbFree(db, zErr); } assert( rc!=SQLITE_SCHEMA ); } rc = sqlite3ApiExit(db, rc); assert( rc==SQLITE_OK || p->pStmt==0 ); |
︙ | ︙ | |||
100252 100253 100254 100255 100256 100257 100258 | ** A PMA created at this point is known as a "level-0 PMA". Higher levels ** of PMAs may be created by merging existing PMAs together - for example ** merging two or more level-0 PMAs together creates a level-1 PMA. ** ** The threshold for the amount of main memory to use before flushing ** records to a PMA is roughly the same as the limit configured for the ** page-cache of the main database. Specifically, the threshold is set to | | | 101364 101365 101366 101367 101368 101369 101370 101371 101372 101373 101374 101375 101376 101377 101378 | ** A PMA created at this point is known as a "level-0 PMA". Higher levels ** of PMAs may be created by merging existing PMAs together - for example ** merging two or more level-0 PMAs together creates a level-1 PMA. ** ** The threshold for the amount of main memory to use before flushing ** records to a PMA is roughly the same as the limit configured for the ** page-cache of the main database. Specifically, the threshold is set to ** the value returned by "PRAGMA main.page_size" multiplied by ** that returned by "PRAGMA main.cache_size", in bytes. ** ** If the sorter is running in single-threaded mode, then all PMAs generated ** are appended to a single temporary file. Or, if the sorter is running in ** multi-threaded mode then up to (N+1) temporary files may be opened, where ** N is the configured number of worker threads. In this case, instead of ** sorting the records and writing the PMA to a temporary file itself, the |
︙ | ︙ | |||
100275 100276 100277 100278 100279 100280 100281 | ** ** When Rewind() is called, any data remaining in memory is flushed to a ** final PMA. So at this point the data is stored in some number of sorted ** PMAs within temporary files on disk. ** ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the ** sorter is running in single-threaded mode, then these PMAs are merged | | | 101387 101388 101389 101390 101391 101392 101393 101394 101395 101396 101397 101398 101399 101400 101401 | ** ** When Rewind() is called, any data remaining in memory is flushed to a ** final PMA. So at this point the data is stored in some number of sorted ** PMAs within temporary files on disk. ** ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the ** sorter is running in single-threaded mode, then these PMAs are merged ** incrementally as keys are retrieved from the sorter by the VDBE. The ** MergeEngine object, described in further detail below, performs this ** merge. ** ** Or, if running in multi-threaded mode, then a background thread is ** launched to merge the existing PMAs. Once the background thread has ** merged T bytes of data into a single sorted PMA, the main thread ** begins reading keys from that PMA while the background thread proceeds |
︙ | ︙ | |||
100438 100439 100440 100441 100442 100443 100444 | ** other way. VdbeSorter.nTask is set to the number of worker threads allowed ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for ** single-threaded operation, there is exactly one instance of this object ** and for multi-threaded operation there are two or more instances. ** ** Essentially, this structure contains all those fields of the VdbeSorter ** structure for which each thread requires a separate instance. For example, | | | 101550 101551 101552 101553 101554 101555 101556 101557 101558 101559 101560 101561 101562 101563 101564 | ** other way. VdbeSorter.nTask is set to the number of worker threads allowed ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for ** single-threaded operation, there is exactly one instance of this object ** and for multi-threaded operation there are two or more instances. ** ** Essentially, this structure contains all those fields of the VdbeSorter ** structure for which each thread requires a separate instance. For example, ** each thread requeries its own UnpackedRecord object to unpack records in ** as part of comparison operations. ** ** Before a background thread is launched, variable bDone is set to 0. Then, ** right before it exits, the thread itself sets bDone to 1. This is used for ** two purposes: ** ** 1. When flushing the contents of memory to a level-0 PMA on disk, to |
︙ | ︙ | |||
100510 100511 100512 100513 100514 100515 100516 | #define SORTER_TYPE_TEXT 0x02 /* ** An instance of the following object is used to read records out of a ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. ** aKey might point into aMap or into aBuffer. If neither of those locations ** contain a contiguous representation of the key, then aAlloc is allocated | | | 101622 101623 101624 101625 101626 101627 101628 101629 101630 101631 101632 101633 101634 101635 101636 | #define SORTER_TYPE_TEXT 0x02 /* ** An instance of the following object is used to read records out of a ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. ** aKey might point into aMap or into aBuffer. If neither of those locations ** contain a contiguous representation of the key, then aAlloc is allocated ** and the key is copied into aAlloc and aKey is made to point to aAlloc. ** ** pFd==0 at EOF. */ struct PmaReader { i64 iReadOff; /* Current read offset */ i64 iEof; /* 1 byte past EOF for this PmaReader */ int nAlloc; /* Bytes of space at aAlloc */ |
︙ | ︙ | |||
101881 101882 101883 101884 101885 101886 101887 | /* Select a sub-task to sort and flush the current list of in-memory ** records to disk. If the sorter is running in multi-threaded mode, ** round-robin between the first (pSorter->nTask-1) tasks. Except, if ** the background thread from a sub-tasks previous turn is still running, ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, ** fall back to using the final sub-task. The first (pSorter->nTask-1) | | | 102993 102994 102995 102996 102997 102998 102999 103000 103001 103002 103003 103004 103005 103006 103007 | /* Select a sub-task to sort and flush the current list of in-memory ** records to disk. If the sorter is running in multi-threaded mode, ** round-robin between the first (pSorter->nTask-1) tasks. Except, if ** the background thread from a sub-tasks previous turn is still running, ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy, ** fall back to using the final sub-task. The first (pSorter->nTask-1) ** sub-tasks are preferred as they use background threads - the final ** sub-task uses the main thread. */ for(i=0; i<nWorker; i++){ int iTest = (pSorter->iPrev + i + 1) % nWorker; pTask = &pSorter->aTask[iTest]; if( pTask->bDone ){ rc = vdbeSorterJoinThread(pTask); } |
︙ | ︙ | |||
102365 102366 102367 102368 102369 102370 102371 | sqlite3 *db = pTask->pSorter->db; /* eMode is always INCRINIT_NORMAL in single-threaded mode */ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); | | | 103477 103478 103479 103480 103481 103482 103483 103484 103485 103486 103487 103488 103489 103490 103491 | sqlite3 *db = pTask->pSorter->db; /* eMode is always INCRINIT_NORMAL in single-threaded mode */ assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL ); rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode); /* Set up the required files for pIncr. A multi-threaded IncrMerge object ** requires two temp files to itself, whereas a single-threaded object ** only requires a region of pTask->file2. */ if( rc==SQLITE_OK ){ int mxSz = pIncr->mxSz; #if SQLITE_MAX_WORKER_THREADS>0 if( pIncr->bUseThread ){ rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd); |
︙ | ︙ | |||
103005 103006 103007 103008 103009 103010 103011 103012 103013 103014 103015 103016 103017 103018 | "p1 INT," "p2 INT," "p3 INT," "p4 TEXT," "p5 INT," "comment TEXT," "subprog TEXT," "stmt HIDDEN" ");", /* Tables_used() schema */ "CREATE TABLE x(" "type TEXT," "schema TEXT," | > > | 104117 104118 104119 104120 104121 104122 104123 104124 104125 104126 104127 104128 104129 104130 104131 104132 | "p1 INT," "p2 INT," "p3 INT," "p4 TEXT," "p5 INT," "comment TEXT," "subprog TEXT," "nexec INT," "ncycle INT," "stmt HIDDEN" ");", /* Tables_used() schema */ "CREATE TABLE x(" "type TEXT," "schema TEXT," |
︙ | ︙ | |||
103167 103168 103169 103170 103171 103172 103173 | if( pIdx->tnum==iRoot ){ pCur->zName = pIdx->zName; pCur->zType = "index"; } } } } | | | 104281 104282 104283 104284 104285 104286 104287 104288 104289 104290 104291 104292 104293 104294 104295 | if( pIdx->tnum==iRoot ){ pCur->zName = pIdx->zName; pCur->zType = "index"; } } } } i += 20; } } switch( i ){ case 0: /* addr */ sqlite3_result_int(ctx, pCur->iAddr); break; case 1: /* opcode */ |
︙ | ︙ | |||
103217 103218 103219 103220 103221 103222 103223 | }else if( aOp[0].p4.z!=0 ){ sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC); }else{ sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC); } break; } | > > > > > > > > > > > > > > > | | | | | 104331 104332 104333 104334 104335 104336 104337 104338 104339 104340 104341 104342 104343 104344 104345 104346 104347 104348 104349 104350 104351 104352 104353 104354 104355 104356 104357 104358 104359 104360 104361 104362 104363 104364 104365 104366 104367 104368 104369 | }else if( aOp[0].p4.z!=0 ){ sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC); }else{ sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC); } break; } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS case 9: /* nexec */ sqlite3_result_int(ctx, pOp->nExec); break; case 10: /* ncycle */ sqlite3_result_int(ctx, pOp->nCycle); break; #else case 9: /* nexec */ case 10: /* ncycle */ sqlite3_result_int(ctx, 0); break; #endif case 20: /* tables_used.type */ sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC); break; case 21: /* tables_used.schema */ sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC); break; case 22: /* tables_used.name */ sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC); break; case 23: /* tables_used.wr */ sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite); break; } return SQLITE_OK; } /* |
︙ | ︙ | |||
103300 103301 103302 103303 103304 103305 103306 | sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; int rc = SQLITE_CONSTRAINT; struct sqlite3_index_constraint *p; bytecodevtab *pVTab = (bytecodevtab*)tab; | | | 104429 104430 104431 104432 104433 104434 104435 104436 104437 104438 104439 104440 104441 104442 104443 | sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; int rc = SQLITE_CONSTRAINT; struct sqlite3_index_constraint *p; bytecodevtab *pVTab = (bytecodevtab*)tab; int iBaseCol = pVTab->bTablesUsed ? 4 : 10; pIdxInfo->estimatedCost = (double)100; pIdxInfo->estimatedRows = 100; pIdxInfo->idxNum = 0; for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){ if( p->usable==0 ) continue; if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){ rc = SQLITE_OK; |
︙ | ︙ | |||
103871 103872 103873 103874 103875 103876 103877 | ** ** WRC_Abort Do no more callbacks. Unwind the stack and ** return from the top-level walk call. ** ** The return value from this routine is WRC_Abort to abandon the tree walk ** and WRC_Continue to continue. */ | | > | > | 105000 105001 105002 105003 105004 105005 105006 105007 105008 105009 105010 105011 105012 105013 105014 105015 105016 105017 105018 105019 105020 105021 105022 105023 105024 105025 | ** ** WRC_Abort Do no more callbacks. Unwind the stack and ** return from the top-level walk call. ** ** The return value from this routine is WRC_Abort to abandon the tree walk ** and WRC_Continue to continue. */ SQLITE_PRIVATE SQLITE_NOINLINE int sqlite3WalkExprNN(Walker *pWalker, Expr *pExpr){ int rc; testcase( ExprHasProperty(pExpr, EP_TokenOnly) ); testcase( ExprHasProperty(pExpr, EP_Reduced) ); while(1){ rc = pWalker->xExprCallback(pWalker, pExpr); if( rc ) return rc & WRC_Abort; if( !ExprHasProperty(pExpr,(EP_TokenOnly|EP_Leaf)) ){ assert( pExpr->x.pList==0 || pExpr->pRight==0 ); if( pExpr->pLeft && sqlite3WalkExprNN(pWalker, pExpr->pLeft) ){ return WRC_Abort; } if( pExpr->pRight ){ assert( !ExprHasProperty(pExpr, EP_WinFunc) ); pExpr = pExpr->pRight; continue; }else if( ExprUseXSelect(pExpr) ){ assert( !ExprHasProperty(pExpr, EP_WinFunc) ); if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort; |
︙ | ︙ | |||
103904 103905 103906 103907 103908 103909 103910 | } } break; } return WRC_Continue; } SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){ | | | 105035 105036 105037 105038 105039 105040 105041 105042 105043 105044 105045 105046 105047 105048 105049 | } } break; } return WRC_Continue; } SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){ return pExpr ? sqlite3WalkExprNN(pWalker,pExpr) : WRC_Continue; } /* ** Call sqlite3WalkExpr() for every expression in list p or until ** an abort request is seen. */ SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){ |
︙ | ︙ | |||
104030 104031 104032 104033 104034 104035 104036 | } p = p->pPrior; }while( p!=0 ); return WRC_Continue; } /* Increase the walkerDepth when entering a subquery, and | | | 105161 105162 105163 105164 105165 105166 105167 105168 105169 105170 105171 105172 105173 105174 105175 | } p = p->pPrior; }while( p!=0 ); return WRC_Continue; } /* Increase the walkerDepth when entering a subquery, and ** decrease when leaving the subquery. */ SQLITE_PRIVATE int sqlite3WalkerDepthIncrease(Walker *pWalker, Select *pSelect){ UNUSED_PARAMETER(pSelect); pWalker->walkerDepth++; return WRC_Continue; } SQLITE_PRIVATE void sqlite3WalkerDepthDecrease(Walker *pWalker, Select *pSelect){ |
︙ | ︙ | |||
105764 105765 105766 105767 105768 105769 105770 | /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; j<pSelect->pEList->nExpr; j++){ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ | | | 106895 106896 106897 106898 106899 106900 106901 106902 106903 106904 106905 106906 106907 106908 106909 | /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; j<pSelect->pEList->nExpr; j++){ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ /* Since this expression is being changed into a reference ** to an identical expression in the result set, remove all Window ** objects belonging to the expression from the Select.pWin list. */ windowRemoveExprFromSelect(pSelect, pE); pItem->u.x.iOrderByCol = j+1; } } } |
︙ | ︙ | |||
106087 106088 106089 106090 106091 106092 106093 | w.u.pNC = pNC; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return SQLITE_ERROR; } #endif | > | | 107218 107219 107220 107221 107222 107223 107224 107225 107226 107227 107228 107229 107230 107231 107232 107233 | w.u.pNC = pNC; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return SQLITE_ERROR; } #endif assert( pExpr!=0 ); sqlite3WalkExprNN(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight -= pExpr->nHeight; #endif assert( EP_Agg==NC_HasAgg ); assert( EP_Win==NC_HasWin ); testcase( pNC->ncFlags & NC_HasAgg ); testcase( pNC->ncFlags & NC_HasWin ); |
︙ | ︙ | |||
106129 106130 106131 106132 106133 106134 106135 | if( pExpr==0 ) continue; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return WRC_Abort; } #endif | | | 107261 107262 107263 107264 107265 107266 107267 107268 107269 107270 107271 107272 107273 107274 107275 | if( pExpr==0 ) continue; #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight += pExpr->nHeight; if( sqlite3ExprCheckHeight(w.pParse, w.pParse->nHeight) ){ return WRC_Abort; } #endif sqlite3WalkExprNN(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 w.pParse->nHeight -= pExpr->nHeight; #endif assert( EP_Agg==NC_HasAgg ); assert( EP_Win==NC_HasWin ); testcase( pNC->ncFlags & NC_HasAgg ); testcase( pNC->ncFlags & NC_HasWin ); |
︙ | ︙ | |||
106151 106152 106153 106154 106155 106156 106157 | } pNC->ncFlags |= savedHasAgg; return WRC_Continue; } /* ** Resolve all names in all expressions of a SELECT and in all | | | 107283 107284 107285 107286 107287 107288 107289 107290 107291 107292 107293 107294 107295 107296 107297 | } pNC->ncFlags |= savedHasAgg; return WRC_Continue; } /* ** Resolve all names in all expressions of a SELECT and in all ** descendants of the SELECT, including compounds off of p->pPrior, ** subqueries in expressions, and subqueries used as FROM clause ** terms. ** ** See sqlite3ResolveExprNames() for a description of the kinds of ** transformations that occur. ** ** All SELECT statements should have been expanded using |
︙ | ︙ | |||
106301 106302 106303 106304 106305 106306 106307 106308 106309 106310 106311 106312 106313 106314 | assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken, 0); } #endif if( op==TK_SELECT_COLUMN ){ assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); assert( pExpr->iColumn < pExpr->iTable ); assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); return sqlite3ExprAffinity( pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr ); } if( op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); | > | 107433 107434 107435 107436 107437 107438 107439 107440 107441 107442 107443 107444 107445 107446 107447 | assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken, 0); } #endif if( op==TK_SELECT_COLUMN ){ assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); assert( pExpr->iColumn < pExpr->iTable ); assert( pExpr->iColumn >= 0 ); assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); return sqlite3ExprAffinity( pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr ); } if( op==TK_VECTOR ){ assert( ExprUseXList(pExpr) ); |
︙ | ︙ | |||
106537 106538 106539 106540 106541 106542 106543 | } return pColl; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return a pointer to the | | | 107670 107671 107672 107673 107674 107675 107676 107677 107678 107679 107680 107681 107682 107683 107684 | } return pColl; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return a pointer to the ** default collation sequence. ** ** See also: sqlite3ExprCollSeq() ** ** The sqlite3ExprCollSeq() routine works the same except that it ** returns NULL if there is no defined collation. */ SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ |
︙ | ︙ | |||
106667 106668 106669 106670 106671 106672 106673 | if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } | | | 107800 107801 107802 107803 107804 107805 107806 107807 107808 107809 107810 107811 107812 107813 107814 | if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* Expression p is a comparison operator. Return a collation sequence ** appropriate for the comparison operator. ** ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). ** However, if the OP_Commuted flag is set, then the order of the operands ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the ** correct collating sequence is found. */ |
︙ | ︙ | |||
107122 107123 107124 107125 107126 107127 107128 107129 107130 107131 107132 107133 107134 107135 | if( pParse->nErr ) return; if( p && ExprUseXList(p) && p->x.pList ){ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); } } #define exprSetHeight(y) #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ /* ** This routine is the core allocator for Expr nodes. ** ** Construct a new expression node and return a pointer to it. Memory ** for this node and for the pToken argument is a single allocation ** obtained from sqlite3DbMalloc(). The calling function | > > > > > > > > > | 108255 108256 108257 108258 108259 108260 108261 108262 108263 108264 108265 108266 108267 108268 108269 108270 108271 108272 108273 108274 108275 108276 108277 | if( pParse->nErr ) return; if( p && ExprUseXList(p) && p->x.pList ){ p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); } } #define exprSetHeight(y) #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ /* ** Set the error offset for an Expr node, if possible. */ SQLITE_PRIVATE void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){ if( pExpr==0 ) return; if( NEVER(ExprUseWJoin(pExpr)) ) return; pExpr->w.iOfst = iOfst; } /* ** This routine is the core allocator for Expr nodes. ** ** Construct a new expression node and return a pointer to it. Memory ** for this node and for the pToken argument is a single allocation ** obtained from sqlite3DbMalloc(). The calling function |
︙ | ︙ | |||
107583 107584 107585 107586 107587 107588 107589 | sqlite3IdListDelete(db, p->pUsing); } } /* ** Arrange to cause pExpr to be deleted when the pParse is deleted. ** This is similar to sqlite3ExprDelete() except that the delete is | | | 108725 108726 108727 108728 108729 108730 108731 108732 108733 108734 108735 108736 108737 108738 108739 | sqlite3IdListDelete(db, p->pUsing); } } /* ** Arrange to cause pExpr to be deleted when the pParse is deleted. ** This is similar to sqlite3ExprDelete() except that the delete is ** deferred until the pParse is deleted. ** ** The pExpr might be deleted immediately on an OOM error. ** ** The deferred delete is (currently) implemented by adding the ** pExpr to the pParse->pConstExpr list with a register number of 0. */ SQLITE_PRIVATE void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ |
︙ | ︙ | |||
108425 108426 108427 108428 108429 108430 108431 | } /* ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE ** and 0 if it is FALSE. */ SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr *pExpr){ | | | 109567 109568 109569 109570 109571 109572 109573 109574 109575 109576 109577 109578 109579 109580 109581 | } /* ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE ** and 0 if it is FALSE. */ SQLITE_PRIVATE int sqlite3ExprTruthValue(const Expr *pExpr){ pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr); assert( pExpr->op==TK_TRUEFALSE ); assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); return pExpr->u.zToken[4]==0; } |
︙ | ︙ | |||
108612 108613 108614 108615 108616 108617 108618 | ** table other than iCur. */ SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){ return exprIsConst(p, 3, iCur); } /* | | > > > > > | | > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | 109754 109755 109756 109757 109758 109759 109760 109761 109762 109763 109764 109765 109766 109767 109768 109769 109770 109771 109772 109773 109774 109775 109776 109777 109778 109779 109780 109781 109782 109783 109784 109785 109786 109787 109788 109789 109790 109791 109792 109793 109794 109795 109796 109797 109798 109799 109800 109801 109802 109803 109804 109805 109806 109807 109808 109809 109810 109811 109812 109813 109814 109815 109816 109817 109818 109819 109820 109821 109822 109823 109824 109825 109826 109827 109828 109829 109830 109831 109832 109833 109834 | ** table other than iCur. */ SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){ return exprIsConst(p, 3, iCur); } /* ** Check pExpr to see if it is an constraint on the single data source ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr ** constrains pSrc but does not depend on any other tables or data ** sources anywhere else in the query. Return true (non-zero) if pExpr ** is a constraint on pSrc only. ** ** This is an optimization. False negatives will perhaps cause slower ** queries, but false positives will yield incorrect answers. So when in ** doubt, return 0. ** ** To be an single-source constraint, the following must be true: ** ** (1) pExpr cannot refer to any table other than pSrc->iCursor. ** ** (2) pExpr cannot use subqueries or non-deterministic functions. ** ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. ** (Is there some way to relax this constraint?) ** ** (4) If pSrc is the right operand of a LEFT JOIN, then... ** (4a) pExpr must come from an ON clause.. ** (4b) and specifically the ON clause associated with the LEFT JOIN. ** ** (5) If pSrc is not the right operand of a LEFT JOIN or the left ** operand of a RIGHT JOIN, then pExpr must be from the WHERE ** clause, not an ON clause. ** ** (6) Either: ** ** (6a) pExpr does not originate in an ON or USING clause, or ** ** (6b) The ON or USING clause from which pExpr is derived is ** not to the left of a RIGHT JOIN (or FULL JOIN). ** ** Without this restriction, accepting pExpr as a single-table ** constraint might move the the ON/USING filter expression ** from the left side of a RIGHT JOIN over to the right side, ** which leads to incorrect answers. See also restriction (9) ** on push-down. */ SQLITE_PRIVATE int sqlite3ExprIsSingleTableConstraint( Expr *pExpr, /* The constraint */ const SrcList *pSrcList, /* Complete FROM clause */ int iSrc /* Which element of pSrcList to use */ ){ const SrcItem *pSrc = &pSrcList->a[iSrc]; if( pSrc->fg.jointype & JT_LTORJ ){ return 0; /* rule (3) */ } if( pSrc->fg.jointype & JT_LEFT ){ if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ }else{ if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ } if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */ ){ int jj; for(jj=0; jj<iSrc; jj++){ if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){ if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* restriction (6) */ } break; } } } return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ } /* ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). |
︙ | ︙ | |||
108982 108983 108984 108985 108986 108987 108988 | ** ** The returned value of this function indicates the b-tree type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. ** IN_INDEX_EPH - The cursor was opened on a specially created and | | | | | | 110160 110161 110162 110163 110164 110165 110166 110167 110168 110169 110170 110171 110172 110173 110174 110175 110176 110177 110178 110179 110180 110181 110182 110183 110184 110185 110186 110187 110188 110189 110190 110191 110192 110193 110194 110195 110196 110197 110198 110199 110200 110201 110202 110203 110204 | ** ** The returned value of this function indicates the b-tree type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. ** IN_INDEX_EPH - The cursor was opened on a specially created and ** populated ephemeral table. ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be ** implemented as a sequence of comparisons. ** ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT <column1>, <column2>... FROM <table> ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then ** pX->iTable made to point to the ephemeral table instead of an ** existing table. In this case, the creation and initialization of the ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag ** will be set on pX and the pX->y.sub fields will be set to show where ** the subroutine is coded. ** ** The inFlags parameter must contain, at a minimum, one of the bits ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will ** be used to loop over all values of the RHS of the IN operator. ** ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate ** through the set members) then the b-tree must not contain duplicates. ** An ephemeral table will be created unless the selected columns are guaranteed ** to be unique - either because it is an INTEGER PRIMARY KEY or due to ** a UNIQUE constraint or index. ** ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used ** for fast set membership tests) then an ephemeral table must ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an ** index can be found with the specified <columns> as its left-most. ** ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and ** if the RHS of the IN operator is a list (not a subquery) then this ** routine might decide that creating an ephemeral b-tree for membership ** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
︙ | ︙ | |||
109345 109346 109347 109348 109349 109350 109351 | ** in the RHS of an IN operator. The IN operator can be in either of two ** forms: ** ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter is the IN operator. The cursor number for the | | | 110523 110524 110525 110526 110527 110528 110529 110530 110531 110532 110533 110534 110535 110536 110537 | ** in the RHS of an IN operator. The IN operator can be in either of two ** forms: ** ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter is the IN operator. The cursor number for the ** constructed ephemeral table is returned. The first time the ephemeral ** table is computed, the cursor number is also stored in pExpr->iTable, ** however the cursor number returned might not be the same, as it might ** have been duplicated using OP_OpenDup. ** ** If the LHS expression ("x" in the examples) is a column value, or ** the SELECT statement returns a column value, then the affinity of that ** column is used to build the index keys. If both 'x' and the |
︙ | ︙ | |||
110160 110161 110162 110163 110164 110165 110166 110167 110168 110169 110170 110171 110172 110173 110174 110175 110176 110177 | Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg, /* Store results here */ u8 p5 /* P5 value for OP_Column + FLAGS */ ){ assert( pParse->pVdbe!=0 ); sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); if( p5 ){ VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Column ) pOp->p5 = p5; } return iReg; } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. | > > > | 111338 111339 111340 111341 111342 111343 111344 111345 111346 111347 111348 111349 111350 111351 111352 111353 111354 111355 111356 111357 111358 | Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg, /* Store results here */ u8 p5 /* P5 value for OP_Column + FLAGS */ ){ assert( pParse->pVdbe!=0 ); assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 ); assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 ); sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); if( p5 ){ VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); if( pOp->opcode==OP_Column ) pOp->p5 = p5; if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG); } return iReg; } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. |
︙ | ︙ | |||
110192 110193 110194 110195 110196 110197 110198 | p->op = TK_REGISTER; p->iTable = iReg; ExprClearProperty(p, EP_Skip); } /* ** Evaluate an expression (either a vector or a scalar expression) and store | | | 111373 111374 111375 111376 111377 111378 111379 111380 111381 111382 111383 111384 111385 111386 111387 | p->op = TK_REGISTER; p->iTable = iReg; ExprClearProperty(p, EP_Skip); } /* ** Evaluate an expression (either a vector or a scalar expression) and store ** the result in contiguous temporary registers. Return the index of ** the first register used to store the result. ** ** If the returned result register is a temporary scalar, then also write ** that register number into *piFreeable. If the returned result register ** is not a temporary or if the expression is a vector set *piFreeable ** to 0. */ |
︙ | ︙ | |||
110232 110233 110234 110235 110236 110237 110238 | /* ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) ** so that a subsequent copy will not be merged into this one. */ static void setDoNotMergeFlagOnCopy(Vdbe *v){ if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ | | | 111413 111414 111415 111416 111417 111418 111419 111420 111421 111422 111423 111424 111425 111426 111427 | /* ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) ** so that a subsequent copy will not be merged into this one. */ static void setDoNotMergeFlagOnCopy(Vdbe *v){ if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */ } } /* ** Generate code to implement special SQL functions that are implemented ** in-line rather than by using the usual callbacks. */ |
︙ | ︙ | |||
110322 110323 110324 110325 110326 110327 110328 | sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), target); break; } case INLINEFUNC_implies_nonnull_row: { | | | | 111503 111504 111505 111506 111507 111508 111509 111510 111511 111512 111513 111514 111515 111516 111517 111518 111519 111520 111521 111522 111523 | sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), target); break; } case INLINEFUNC_implies_nonnull_row: { /* Result of sqlite3ExprImpliesNonNullRow() */ Expr *pA1; assert( nFarg==2 ); pA1 = pFarg->a[1].pExpr; if( pA1->op==TK_COLUMN ){ sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1), target); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, target); } break; } |
︙ | ︙ | |||
110504 110505 110506 110507 110508 110509 110510 | } case TK_COLUMN: { int iTab = pExpr->iTable; int iReg; if( ExprHasProperty(pExpr, EP_FixedCol) ){ /* This COLUMN expression is really a constant due to WHERE clause ** constraints, and that constant is coded by the pExpr->pLeft | | | 111685 111686 111687 111688 111689 111690 111691 111692 111693 111694 111695 111696 111697 111698 111699 | } case TK_COLUMN: { int iTab = pExpr->iTable; int iReg; if( ExprHasProperty(pExpr, EP_FixedCol) ){ /* This COLUMN expression is really a constant due to WHERE clause ** constraints, and that constant is coded by the pExpr->pLeft ** expression. However, make sure the constant has the correct ** datatype by applying the Affinity of the table column to the ** constant. */ int aff; iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); assert( ExprUseYTab(pExpr) ); assert( pExpr->y.pTab!=0 ); |
︙ | ︙ | |||
110830 110831 110832 110833 110834 110835 110836 | pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); } #endif if( pDef==0 || pDef->xFinalize!=0 ){ sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); break; } | | | 112011 112012 112013 112014 112015 112016 112017 112018 112019 112020 112021 112022 112023 112024 112025 | pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); } #endif if( pDef==0 || pDef->xFinalize!=0 ){ sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); break; } if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){ assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); return exprCodeInlineFunction(pParse, pFarg, SQLITE_PTR_TO_INT(pDef->pUserData), target); }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ sqlite3ExprFunctionUsable(pParse, pExpr, pDef); } |
︙ | ︙ | |||
110856 110857 110858 110859 110860 110861 110862 | if( constMask ){ r1 = pParse->nMem+1; pParse->nMem += nFarg; }else{ r1 = sqlite3GetTempRange(pParse, nFarg); } | | | | > > | > > | < | < | 112037 112038 112039 112040 112041 112042 112043 112044 112045 112046 112047 112048 112049 112050 112051 112052 112053 112054 112055 112056 112057 112058 112059 112060 112061 112062 112063 112064 112065 112066 112067 112068 112069 112070 112071 112072 112073 | if( constMask ){ r1 = pParse->nMem+1; pParse->nMem += nFarg; }else{ r1 = sqlite3GetTempRange(pParse, nFarg); } /* For length() and typeof() and octet_length() functions, ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid ** unnecessary data loading. */ if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ u8 exprOp; assert( nFarg==1 ); assert( pFarg->a[0].pExpr!=0 ); exprOp = pFarg->a[0].pExpr->op; if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG ); assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG ); testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG); pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG; } } sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR); }else{ r1 = 0; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** |
︙ | ︙ | |||
111233 111234 111235 111236 111237 111238 111239 | ** If the expression uses functions (that might throw an exception) then ** guard them with an OP_Once opcode to ensure that the code is only executed ** once. If no functions are involved, then factor the code out and put it at ** the end of the prepared statement in the initialization section. ** ** If regDest>=0 then the result is always stored in that register and the ** result is not reusable. If regDest<0 then this routine is free to | | | 112416 112417 112418 112419 112420 112421 112422 112423 112424 112425 112426 112427 112428 112429 112430 | ** If the expression uses functions (that might throw an exception) then ** guard them with an OP_Once opcode to ensure that the code is only executed ** once. If no functions are involved, then factor the code out and put it at ** the end of the prepared statement in the initialization section. ** ** If regDest>=0 then the result is always stored in that register and the ** result is not reusable. If regDest<0 then this routine is free to ** store the value wherever it wants. The register where the expression ** is stored is returned. When regDest<0, two identical expressions might ** code to the same register, if they do not contain function calls and hence ** are factored out into the initialization section at the end of the ** prepared statement. */ SQLITE_PRIVATE int sqlite3ExprCodeRunJustOnce( Parse *pParse, /* Parsing context */ |
︙ | ︙ | |||
112151 112152 112153 112154 112155 112156 112157 | ** ** pE1: x==5 pE2: x==5 Result: true ** pE1: x>0 pE2: x==5 Result: false ** pE1: x=21 pE2: x=21 OR y=43 Result: true ** pE1: x!=123 pE2: x IS NOT NULL Result: true ** pE1: x!=?1 pE2: x IS NOT NULL Result: true ** pE1: x IS NULL pE2: x IS NOT NULL Result: false | | | 113334 113335 113336 113337 113338 113339 113340 113341 113342 113343 113344 113345 113346 113347 113348 | ** ** pE1: x==5 pE2: x==5 Result: true ** pE1: x>0 pE2: x==5 Result: false ** pE1: x=21 pE2: x=21 OR y=43 Result: true ** pE1: x!=123 pE2: x IS NOT NULL Result: true ** pE1: x!=?1 pE2: x IS NOT NULL Result: true ** pE1: x IS NULL pE2: x IS NOT NULL Result: false ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false ** ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has ** Expr.iTable<0 then assume a table number given by iTab. ** ** If pParse is not NULL, then the values of bound variables in pE1 are ** compared against literal values in pE2 and pParse->pVdbe->expmask is ** modified to record which bound variables are referenced. If pParse |
︙ | ︙ | |||
112187 112188 112189 112190 112191 112192 112193 112194 112195 112196 112197 112198 112199 112200 112201 112202 112203 112204 112205 112206 112207 112208 112209 112210 112211 112212 | if( pE2->op==TK_NOTNULL && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) ){ return 1; } return 0; } /* ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). ** If the expression node requires that the table at pWalker->iCur ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. ** ** This routine controls an optimization. False positives (setting ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives ** (never setting pWalker->eCode) is a harmless missed optimization. */ static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; switch( pExpr->op ){ case TK_ISNOT: case TK_ISNULL: case TK_NOTNULL: case TK_IS: | > > > > > > > > > > > > > > > > > > > > > > > > > > < < | | | < | | | < > > > > > > > > > | > | > | | > > > > > | < > > > > | | < < > | 113370 113371 113372 113373 113374 113375 113376 113377 113378 113379 113380 113381 113382 113383 113384 113385 113386 113387 113388 113389 113390 113391 113392 113393 113394 113395 113396 113397 113398 113399 113400 113401 113402 113403 113404 113405 113406 113407 113408 113409 113410 113411 113412 113413 113414 113415 113416 113417 113418 113419 113420 113421 113422 113423 113424 113425 113426 113427 113428 113429 113430 113431 113432 113433 113434 113435 113436 113437 113438 113439 113440 113441 113442 113443 113444 113445 113446 113447 113448 113449 113450 113451 113452 113453 113454 113455 113456 113457 113458 113459 113460 113461 113462 113463 113464 113465 113466 113467 113468 113469 113470 113471 113472 113473 113474 113475 113476 113477 113478 113479 113480 113481 | if( pE2->op==TK_NOTNULL && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) ){ return 1; } return 0; } /* This is a helper function to impliesNotNullRow(). In this routine, ** set pWalker->eCode to one only if *both* of the input expressions ** separately have the implies-not-null-row property. */ static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){ if( pWalker->eCode==0 ){ sqlite3WalkExpr(pWalker, pE1); if( pWalker->eCode ){ pWalker->eCode = 0; sqlite3WalkExpr(pWalker, pE2); } } } /* ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). ** If the expression node requires that the table at pWalker->iCur ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. ** ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when ** evaluating terms in the ON clause of an inner join. ** ** This routine controls an optimization. False positives (setting ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives ** (never setting pWalker->eCode) is a harmless missed optimization. */ static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){ /* If iCur is used in an inner-join ON clause to the left of a ** RIGHT JOIN, that does *not* mean that the table must be non-null. ** But it is difficult to check for that condition precisely. ** To keep things simple, any use of iCur from any inner-join is ** ignored while attempting to simplify a RIGHT JOIN. */ return WRC_Prune; } switch( pExpr->op ){ case TK_ISNOT: case TK_ISNULL: case TK_NOTNULL: case TK_IS: case TK_VECTOR: case TK_FUNCTION: case TK_TRUTH: case TK_CASE: testcase( pExpr->op==TK_ISNOT ); testcase( pExpr->op==TK_ISNULL ); testcase( pExpr->op==TK_NOTNULL ); testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_VECTOR ); testcase( pExpr->op==TK_FUNCTION ); testcase( pExpr->op==TK_TRUTH ); testcase( pExpr->op==TK_CASE ); return WRC_Prune; case TK_COLUMN: if( pWalker->u.iCur==pExpr->iTable ){ pWalker->eCode = 1; return WRC_Abort; } return WRC_Prune; case TK_OR: case TK_AND: /* Both sides of an AND or OR must separately imply non-null-row. ** Consider these cases: ** 1. NOT (x AND y) ** 2. x OR y ** If only one of x or y is non-null-row, then the overall expression ** can be true if the other arm is false (case 1) or true (case 2). */ testcase( pExpr->op==TK_OR ); testcase( pExpr->op==TK_AND ); bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight); return WRC_Prune; case TK_IN: /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)", ** both of which can be true. But apart from these cases, if ** the left-hand side of the IN is NULL then the IN itself will be ** NULL. */ if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){ sqlite3WalkExpr(pWalker, pExpr->pLeft); } return WRC_Prune; case TK_BETWEEN: /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else ** both y and z must be non-null row */ assert( ExprUseXList(pExpr) ); assert( pExpr->x.pList->nExpr==2 ); sqlite3WalkExpr(pWalker, pExpr->pLeft); bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr, pExpr->x.pList->a[1].pExpr); return WRC_Prune; /* Virtual tables are allowed to use constraints like x=NULL. So ** a term of the form x=y does not prove that y is not null if x ** is the column of a virtual table */ case TK_EQ: case TK_NE: |
︙ | ︙ | |||
112306 112307 112308 112309 112310 112311 112312 | ** ** This routine is used to check if a LEFT JOIN can be converted into ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE ** clause requires that some column of the right table of the LEFT JOIN ** be non-NULL, then the LEFT JOIN can be safely converted into an ** ordinary join. */ | | | > | 113529 113530 113531 113532 113533 113534 113535 113536 113537 113538 113539 113540 113541 113542 113543 113544 113545 113546 113547 113548 113549 113550 113551 113552 113553 113554 113555 113556 113557 113558 113559 | ** ** This routine is used to check if a LEFT JOIN can be converted into ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE ** clause requires that some column of the right table of the LEFT JOIN ** be non-NULL, then the LEFT JOIN can be safely converted into an ** ordinary join. */ SQLITE_PRIVATE int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){ Walker w; p = sqlite3ExprSkipCollateAndLikely(p); if( p==0 ) return 0; if( p->op==TK_NOTNULL ){ p = p->pLeft; }else{ while( p->op==TK_AND ){ if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1; p = p->pRight; } } w.xExprCallback = impliesNotNullRow; w.xSelectCallback = 0; w.xSelectCallback2 = 0; w.eCode = 0; w.mWFlags = isRJ!=0; w.u.iCur = iTab; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** An instance of the following structure is used by the tree walker |
︙ | ︙ | |||
112382 112383 112384 112385 112386 112387 112388 | w.xExprCallback = exprIdxCover; w.u.pIdxCover = &xcov; sqlite3WalkExpr(&w, pExpr); return !w.eCode; } | | | 113606 113607 113608 113609 113610 113611 113612 113613 113614 113615 113616 113617 113618 113619 113620 | w.xExprCallback = exprIdxCover; w.u.pIdxCover = &xcov; sqlite3WalkExpr(&w, pExpr); return !w.eCode; } /* Structure used to pass information throughout the Walker in order to ** implement sqlite3ReferencesSrcList(). */ struct RefSrcList { sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ SrcList *pRef; /* Looking for references to these tables */ i64 nExclude; /* Number of tables to exclude from the search */ int *aiExclude; /* Cursor IDs for tables to exclude from the search */ |
︙ | ︙ | |||
112598 112599 112600 112601 112602 112603 112604 | } /* ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn. ** Return the index in aCol[] of the entry that describes that column. ** ** If no prior entry is found, create a new one and return -1. The | | > | 113822 113823 113824 113825 113826 113827 113828 113829 113830 113831 113832 113833 113834 113835 113836 113837 113838 113839 113840 113841 113842 113843 113844 113845 113846 113847 113848 113849 | } /* ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn. ** Return the index in aCol[] of the entry that describes that column. ** ** If no prior entry is found, create a new one and return -1. The ** new column will have an index of pAggInfo->nColumn-1. */ static void findOrCreateAggInfoColumn( Parse *pParse, /* Parsing context */ AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */ Expr *pExpr /* Expr describing the column to find or insert */ ){ struct AggInfo_col *pCol; int k; assert( pAggInfo->iFirstReg==0 ); pCol = pAggInfo->aCol; for(k=0; k<pAggInfo->nColumn; k++, pCol++){ if( pCol->pCExpr==pExpr ) return; if( pCol->iTable==pExpr->iTable && pCol->iColumn==pExpr->iColumn && pExpr->op!=TK_IF_NULL_ROW ){ goto fix_up_expr; } } |
︙ | ︙ | |||
113491 113492 113493 113494 113495 113496 113497 | pCol->zCnName = sqlite3DbStrDup(db, pCol->zCnName); pCol->hName = sqlite3StrIHash(pCol->zCnName); } assert( IsOrdinaryTable(pNew) ); pNew->u.tab.pDfltList = sqlite3ExprListDup(db, pTab->u.tab.pDfltList, 0); pNew->pSchema = db->aDb[iDb].pSchema; pNew->u.tab.addColOffset = pTab->u.tab.addColOffset; | | | 114716 114717 114718 114719 114720 114721 114722 114723 114724 114725 114726 114727 114728 114729 114730 | pCol->zCnName = sqlite3DbStrDup(db, pCol->zCnName); pCol->hName = sqlite3StrIHash(pCol->zCnName); } assert( IsOrdinaryTable(pNew) ); pNew->u.tab.pDfltList = sqlite3ExprListDup(db, pTab->u.tab.pDfltList, 0); pNew->pSchema = db->aDb[iDb].pSchema; pNew->u.tab.addColOffset = pTab->u.tab.addColOffset; assert( pNew->nTabRef==1 ); exit_begin_add_column: sqlite3SrcListDelete(db, pSrc); return; } /* |
︙ | ︙ | |||
113996 113997 113998 113999 114000 114001 114002 | for(pp=&pCtx->pList; *pp!=pBest; pp=&(*pp)->pNext); *pp = pBest->pNext; return pBest; } /* | | | 115221 115222 115223 115224 115225 115226 115227 115228 115229 115230 115231 115232 115233 115234 115235 | for(pp=&pCtx->pList; *pp!=pBest; pp=&(*pp)->pNext); *pp = pBest->pNext; return pBest; } /* ** An error occurred while parsing or otherwise processing a database ** object (either pParse->pNewTable, pNewIndex or pNewTrigger) as part of an ** ALTER TABLE RENAME COLUMN program. The error message emitted by the ** sub-routine is currently stored in pParse->zErrMsg. This function ** adds context to the error message and then stores it in pCtx. */ static void renameColumnParseError( sqlite3_context *pCtx, |
︙ | ︙ | |||
117102 117103 117104 117105 117106 117107 117108 | pPrevIdx = pIdx; } pSample = &pIdx->aSample[pIdx->nSample]; decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); | | > | | | 118327 118328 118329 118330 118331 118332 118333 118334 118335 118336 118337 118338 118339 118340 118341 118342 118343 118344 118345 118346 118347 118348 118349 | pPrevIdx = pIdx; } pSample = &pIdx->aSample[pIdx->nSample]; decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); /* Take a copy of the sample. Add 8 extra 0x00 bytes the end of the buffer. ** This is in case the sample record is corrupted. In that case, the ** sqlite3VdbeRecordCompare() may read up to two varints past the ** end of the allocated buffer before it realizes it is dealing with ** a corrupt record. Or it might try to read a large integer from the ** buffer. In any case, eight 0x00 bytes prevents this from causing ** a buffer overread. */ pSample->n = sqlite3_column_bytes(pStmt, 4); pSample->p = sqlite3DbMallocZero(db, pSample->n + 8); if( pSample->p==0 ){ sqlite3_finalize(pStmt); return SQLITE_NOMEM_BKPT; } if( pSample->n ){ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); } |
︙ | ︙ | |||
118067 118068 118069 118070 118071 118072 118073 | const char *zArg1, const char *zArg2, const char *zArg3 ){ sqlite3 *db = pParse->db; int rc; | | | 119293 119294 119295 119296 119297 119298 119299 119300 119301 119302 119303 119304 119305 119306 119307 | const char *zArg1, const char *zArg2, const char *zArg3 ){ sqlite3 *db = pParse->db; int rc; /* Don't do any authorization checks if the database is initializing ** or if the parser is being invoked from within sqlite3_declare_vtab. */ assert( !IN_RENAME_OBJECT || db->xAuth==0 ); if( db->xAuth==0 || db->init.busy || IN_SPECIAL_PARSE ){ return SQLITE_OK; } |
︙ | ︙ | |||
118368 118369 118370 118371 118372 118373 118374 118375 118376 118377 118378 | for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ | > | > | | 119594 119595 119596 119597 119598 119599 119600 119601 119602 119603 119604 119605 119606 119607 119608 119609 119610 119611 119612 119613 119614 119615 119616 119617 119618 | for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif #ifndef SQLITE_OMIT_SHARED_CACHE /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ if( pParse->nTableLock ) codeTableLocks(pParse); #endif /* Initialize any AUTOINCREMENT data structures required. */ if( pParse->pAinc ) sqlite3AutoincrementBegin(pParse); /* Code constant expressions that where factored out of inner loops. ** ** The pConstExpr list might also contain expressions that we simply ** want to keep around until the Parse object is deleted. Such ** expressions have iConstExprReg==0. Do not generate code for ** those expressions, of course. |
︙ | ︙ | |||
118889 118890 118891 118892 118893 118894 118895 | pCol->zCnName = zNew; memcpy(pCol->zCnName + n, zColl, nColl); pCol->colFlags |= COLFLAG_HASCOLL; } } /* | | | 120117 120118 120119 120120 120121 120122 120123 120124 120125 120126 120127 120128 120129 120130 120131 | pCol->zCnName = zNew; memcpy(pCol->zCnName + n, zColl, nColl); pCol->colFlags |= COLFLAG_HASCOLL; } } /* ** Return the collating sequence name for a column */ SQLITE_PRIVATE const char *sqlite3ColumnColl(Column *pCol){ const char *z; if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; z = pCol->zCnName; while( *z ){ z++; } if( pCol->colFlags & COLFLAG_HASTYPE ){ |
︙ | ︙ | |||
119647 119648 119649 119650 119651 119652 119653 | if( (p = pParse->pNewTable)==0 ) return; if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); return; } if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); | | | 120875 120876 120877 120878 120879 120880 120881 120882 120883 120884 120885 120886 120887 120888 120889 | if( (p = pParse->pNewTable)==0 ) return; if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); return; } if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); /* Because keywords GENERATE ALWAYS can be converted into identifiers ** by the parser, we can sometimes end up with a typename that ends ** with "generated always". Check for this case and omit the surplus ** text. */ if( sType.n>=16 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 ){ sType.n -= 6; |
︙ | ︙ | |||
119868 119869 119870 119871 119872 119873 119874 | ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ SQLITE_PRIVATE void sqlite3AddDefaultValue( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The parsed expression of the default value */ const char *zStart, /* Start of the default value text */ | | | 121096 121097 121098 121099 121100 121101 121102 121103 121104 121105 121106 121107 121108 121109 121110 | ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ SQLITE_PRIVATE void sqlite3AddDefaultValue( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The parsed expression of the default value */ const char *zStart, /* Start of the default value text */ const char *zEnd /* First character past end of default value text */ ){ Table *p; Column *pCol; sqlite3 *db = pParse->db; p = pParse->pNewTable; if( p!=0 ){ int isInit = db->init.busy && db->init.iDb!=1; |
︙ | ︙ | |||
120216 120217 120218 120219 120220 120221 120222 | ** The first parameter is a pointer to an output buffer. The second ** parameter is a pointer to an integer that contains the offset at ** which to write into the output buffer. This function copies the ** nul-terminated string pointed to by the third parameter, zSignedIdent, ** to the specified offset in the buffer and updates *pIdx to refer ** to the first byte after the last byte written before returning. ** | | | 121444 121445 121446 121447 121448 121449 121450 121451 121452 121453 121454 121455 121456 121457 121458 | ** The first parameter is a pointer to an output buffer. The second ** parameter is a pointer to an integer that contains the offset at ** which to write into the output buffer. This function copies the ** nul-terminated string pointed to by the third parameter, zSignedIdent, ** to the specified offset in the buffer and updates *pIdx to refer ** to the first byte after the last byte written before returning. ** ** If the string zSignedIdent consists entirely of alphanumeric ** characters, does not begin with a digit and is not an SQL keyword, ** then it is copied to the output buffer exactly as it is. Otherwise, ** it is quoted using double-quotes. */ static void identPut(char *z, int *pIdx, char *zSignedIdent){ unsigned char *zIdent = (unsigned char*)zSignedIdent; int i, j, needQuote; |
︙ | ︙ | |||
120368 120369 120370 120371 120372 120373 120374 | static void estimateIndexWidth(Index *pIdx){ unsigned wIndex = 0; int i; const Column *aCol = pIdx->pTable->aCol; for(i=0; i<pIdx->nColumn; i++){ i16 x = pIdx->aiColumn[i]; assert( x<pIdx->pTable->nCol ); | | | 121596 121597 121598 121599 121600 121601 121602 121603 121604 121605 121606 121607 121608 121609 121610 | static void estimateIndexWidth(Index *pIdx){ unsigned wIndex = 0; int i; const Column *aCol = pIdx->pTable->aCol; for(i=0; i<pIdx->nColumn; i++){ i16 x = pIdx->aiColumn[i]; assert( x<pIdx->pTable->nCol ); wIndex += x<0 ? 1 : aCol[x].szEst; } pIdx->szIdxRow = sqlite3LogEst(wIndex*4); } /* Return true if column number x is any of the first nCol entries of aiCol[]. ** This is used to determine if the column number x appears in any of the ** first nCol entries of an index. |
︙ | ︙ | |||
122106 122107 122108 122109 122110 122111 122112 | iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) goto exit_create_index; assert( pName && pName->z ); #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the table ** is a temp table. If so, set the database to 1. Do not do this | | | 123334 123335 123336 123337 123338 123339 123340 123341 123342 123343 123344 123345 123346 123347 123348 | iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) goto exit_create_index; assert( pName && pName->z ); #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the table ** is a temp table. If so, set the database to 1. Do not do this ** if initializing a database schema. */ if( !db->init.busy ){ pTab = sqlite3SrcListLookup(pParse, pTblName); if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } } |
︙ | ︙ | |||
123763 123764 123765 123766 123767 123768 123769 | assert( pCte!=0 ); cteClear(db, pCte); sqlite3DbFree(db, pCte); } /* ** This routine is invoked once per CTE by the parser while parsing a | | | 124991 124992 124993 124994 124995 124996 124997 124998 124999 125000 125001 125002 125003 125004 125005 | assert( pCte!=0 ); cteClear(db, pCte); sqlite3DbFree(db, pCte); } /* ** This routine is invoked once per CTE by the parser while parsing a ** WITH clause. The CTE described by the third argument is added to ** the WITH clause of the second argument. If the second argument is ** NULL, then a new WITH argument is created. */ SQLITE_PRIVATE With *sqlite3WithAdd( Parse *pParse, /* Parsing context */ With *pWith, /* Existing WITH clause, or NULL */ Cte *pCte /* CTE to add to the WITH clause */ |
︙ | ︙ | |||
124014 124015 124016 124017 124018 124019 124020 124021 124022 124023 124024 124025 124026 124027 | SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); db->enc = enc; /* EVIDENCE-OF: R-08308-17224 The default collating function for all ** strings is BINARY. */ db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0); } /* ** This function is responsible for invoking the collation factory callback ** or substituting a collation sequence of a different encoding when the ** requested collation sequence is not available in the desired encoding. ** | > | 125242 125243 125244 125245 125246 125247 125248 125249 125250 125251 125252 125253 125254 125255 125256 | SQLITE_PRIVATE void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){ assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); db->enc = enc; /* EVIDENCE-OF: R-08308-17224 The default collating function for all ** strings is BINARY. */ db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0); sqlite3ExpirePreparedStatements(db, 1); } /* ** This function is responsible for invoking the collation factory callback ** or substituting a collation sequence of a different encoding when the ** requested collation sequence is not available in the desired encoding. ** |
︙ | ︙ | |||
124404 124405 124406 124407 124408 124409 124410 | ** */ SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ SrcItem *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc>=1 ); pTab = sqlite3LocateTableItem(pParse, 0, pItem); | | > | 125633 125634 125635 125636 125637 125638 125639 125640 125641 125642 125643 125644 125645 125646 125647 125648 125649 | ** */ SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ SrcItem *pItem = pSrc->a; Table *pTab; assert( pItem && pSrc->nSrc>=1 ); pTab = sqlite3LocateTableItem(pParse, 0, pItem); if( pItem->pTab ) sqlite3DeleteTable(pParse->db, pItem->pTab); pItem->pTab = pTab; pItem->fg.notCte = 1; if( pTab ){ pTab->nTabRef++; if( pItem->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pItem) ){ pTab = 0; } } return pTab; |
︙ | ︙ | |||
124558 124559 124560 124561 124562 124563 124564 | ExprList *pOrderBy, /* The ORDER BY clause. May be null */ Expr *pLimit, /* The LIMIT clause. May be null */ char *zStmtType /* Either DELETE or UPDATE. For err msgs. */ ){ sqlite3 *db = pParse->db; Expr *pLhs = NULL; /* LHS of IN(SELECT...) operator */ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */ | | | 125788 125789 125790 125791 125792 125793 125794 125795 125796 125797 125798 125799 125800 125801 125802 | ExprList *pOrderBy, /* The ORDER BY clause. May be null */ Expr *pLimit, /* The LIMIT clause. May be null */ char *zStmtType /* Either DELETE or UPDATE. For err msgs. */ ){ sqlite3 *db = pParse->db; Expr *pLhs = NULL; /* LHS of IN(SELECT...) operator */ Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */ ExprList *pEList = NULL; /* Expression list containing only pSelectRowid*/ SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */ Select *pSelect = NULL; /* Complete SELECT tree */ Table *pTab; /* Check that there isn't an ORDER BY without a LIMIT clause. */ if( pOrderBy && pLimit==0 ) { |
︙ | ︙ | |||
124596 124597 124598 124599 124600 124601 124602 124603 | if( HasRowid(pTab) ){ pLhs = sqlite3PExpr(pParse, TK_ROW, 0, 0); pEList = sqlite3ExprListAppend( pParse, 0, sqlite3PExpr(pParse, TK_ROW, 0, 0) ); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); if( pPk->nKeyCol==1 ){ | > > > > | > > | | 125826 125827 125828 125829 125830 125831 125832 125833 125834 125835 125836 125837 125838 125839 125840 125841 125842 125843 125844 125845 125846 125847 125848 125849 125850 125851 125852 125853 | if( HasRowid(pTab) ){ pLhs = sqlite3PExpr(pParse, TK_ROW, 0, 0); pEList = sqlite3ExprListAppend( pParse, 0, sqlite3PExpr(pParse, TK_ROW, 0, 0) ); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->nKeyCol>=1 ); if( pPk->nKeyCol==1 ){ const char *zName; assert( pPk->aiColumn[0]>=0 && pPk->aiColumn[0]<pTab->nCol ); zName = pTab->aCol[pPk->aiColumn[0]].zCnName; pLhs = sqlite3Expr(db, TK_ID, zName); pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, zName)); }else{ int i; for(i=0; i<pPk->nKeyCol; i++){ Expr *p; assert( pPk->aiColumn[i]>=0 && pPk->aiColumn[i]<pTab->nCol ); p = sqlite3Expr(db, TK_ID, pTab->aCol[pPk->aiColumn[i]].zCnName); pEList = sqlite3ExprListAppend(pParse, pEList, p); } pLhs = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); if( pLhs ){ pLhs->x.pList = sqlite3ExprListDup(db, pEList, 0); } } |
︙ | ︙ | |||
124632 124633 124634 124635 124636 124637 124638 | } /* generate the SELECT expression tree. */ pSelect = sqlite3SelectNew(pParse, pEList, pSelectSrc, pWhere, 0 ,0, pOrderBy,0,pLimit ); | | | 125868 125869 125870 125871 125872 125873 125874 125875 125876 125877 125878 125879 125880 125881 125882 | } /* generate the SELECT expression tree. */ pSelect = sqlite3SelectNew(pParse, pEList, pSelectSrc, pWhere, 0 ,0, pOrderBy,0,pLimit ); /* now generate the new WHERE rowid IN clause for the DELETE/UPDATE */ pInClause = sqlite3PExpr(pParse, TK_IN, pLhs, 0); sqlite3PExprAddSelect(pParse, pInClause, pSelect); return pInClause; } #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) */ /* && !defined(SQLITE_OMIT_SUBQUERY) */ |
︙ | ︙ | |||
124861 124862 124863 124864 124865 124866 124867 | { u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK; if( sNC.ncFlags & NC_Subquery ) bComplex = 1; wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW); if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; | | | 126097 126098 126099 126100 126101 126102 126103 126104 126105 126106 126107 126108 126109 126110 126111 | { u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK; if( sNC.ncFlags & NC_Subquery ) bComplex = 1; wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW); if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; assert( nPk==1 ); iRowSet = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); }else{ /* For a WITHOUT ROWID table, create an ephemeral table used to ** hold all primary keys for rows to be deleted. */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); |
︙ | ︙ | |||
124889 124890 124891 124892 124893 124894 124895 | ** ONEPASS_SINGLE: One-pass approach - at most one row deleted. ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,0,wcf,iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); | | > | 126125 126126 126127 126128 126129 126130 126131 126132 126133 126134 126135 126136 126137 126138 126139 126140 | ** ONEPASS_SINGLE: One-pass approach - at most one row deleted. ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0,0,wcf,iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF || OptimizationDisabled(db, SQLITE_OnePass) ); if( eOnePass!=ONEPASS_SINGLE ) sqlite3MultiWrite(pParse); if( sqlite3WhereUsesDeferredSeek(pWInfo) ){ sqlite3VdbeAddOp1(v, OP_FinishSeek, iTabCur); } /* Keep track of the number of rows to be deleted */ if( memCnt ){ |
︙ | ︙ | |||
125226 125227 125228 125229 125230 125231 125232 | /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just deleted. */ sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0); /* Invoke AFTER DELETE trigger programs. */ | > | | | > | 126463 126464 126465 126466 126467 126468 126469 126470 126471 126472 126473 126474 126475 126476 126477 126478 126479 126480 126481 | /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just deleted. */ sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0); /* Invoke AFTER DELETE trigger programs. */ if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel ); } /* Jump here if the row had already been deleted before any BEFORE ** trigger programs were invoked. Or if a trigger program throws a ** RAISE(IGNORE) exception. */ sqlite3VdbeResolveLabel(v, iLabel); VdbeModuleComment((v, "END: GenRowDel()")); } |
︙ | ︙ | |||
125540 125541 125542 125543 125544 125545 125546 125547 125548 125549 125550 125551 125552 125553 | } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the abs() function. ** ** IMP: R-23979-26855 The abs(X) function returns the absolute value of ** the numeric argument X. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 126779 126780 126781 126782 126783 126784 126785 126786 126787 126788 126789 126790 126791 126792 126793 126794 126795 126796 126797 126798 126799 126800 126801 126802 126803 126804 126805 126806 126807 126808 126809 126810 126811 126812 126813 126814 126815 126816 126817 126818 126819 126820 126821 126822 126823 126824 126825 126826 126827 126828 | } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the octet_length() function */ static void bytelengthFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_BLOB: { sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); break; } case SQLITE_INTEGER: case SQLITE_FLOAT: { i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2; sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m); break; } case SQLITE_TEXT: { if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){ sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); }else{ sqlite3_result_int(context, sqlite3_value_bytes16(argv[0])); } break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the abs() function. ** ** IMP: R-23979-26855 The abs(X) function returns the absolute value of ** the numeric argument X. */ |
︙ | ︙ | |||
125817 125818 125819 125820 125821 125822 125823 | ** otherwise use printf. */ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){ /* The value has no fractional part so there is nothing to round */ }else if( n==0 ){ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5))); }else{ | | | 127092 127093 127094 127095 127096 127097 127098 127099 127100 127101 127102 127103 127104 127105 127106 | ** otherwise use printf. */ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){ /* The value has no fractional part so there is nothing to round */ }else if( n==0 ){ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5))); }else{ zBuf = sqlite3_mprintf("%!.*f",n,r); if( zBuf==0 ){ sqlite3_result_error_nomem(context); return; } sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); sqlite3_free(zBuf); } |
︙ | ︙ | |||
126017 126018 126019 126020 126021 126022 126023 | u8 matchOne; /* "?" or "_" */ u8 matchSet; /* "[" or 0 */ u8 noCase; /* true to ignore case differences */ }; /* ** For LIKE and GLOB matching on EBCDIC machines, assume that every | | | 127292 127293 127294 127295 127296 127297 127298 127299 127300 127301 127302 127303 127304 127305 127306 | u8 matchOne; /* "?" or "_" */ u8 matchSet; /* "[" or 0 */ u8 noCase; /* true to ignore case differences */ }; /* ** For LIKE and GLOB matching on EBCDIC machines, assume that every ** character is exactly one byte in size. Also, provide the Utf8Read() ** macro for fast reading of the next character in the common case where ** the next character is ASCII. */ #if defined(SQLITE_EBCDIC) # define sqlite3Utf8Read(A) (*((*A)++)) # define Utf8Read(A) (*(A++)) #else |
︙ | ︙ | |||
126250 126251 126252 126253 126254 126255 126256 | #ifdef SQLITE_TEST SQLITE_API int sqlite3_like_count = 0; #endif /* ** Implementation of the like() SQL function. This function implements | | | 127525 127526 127527 127528 127529 127530 127531 127532 127533 127534 127535 127536 127537 127538 127539 | #ifdef SQLITE_TEST SQLITE_API int sqlite3_like_count = 0; #endif /* ** Implementation of the like() SQL function. This function implements ** the built-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B,A). ** ** This same function (with a different compareInfo structure) computes |
︙ | ︙ | |||
126583 126584 126585 126586 126587 126588 126589 126590 126591 126592 126593 126594 126595 126596 | }else{ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); } \ } sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); } /* ** The hex() function. Interpret the argument as a blob. Return ** a hexadecimal rendering as text. */ | > | 127858 127859 127860 127861 127862 127863 127864 127865 127866 127867 127868 127869 127870 127871 127872 | }else{ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); } \ } *zOut = 0; sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); } /* ** The hex() function. Interpret the argument as a blob. Return ** a hexadecimal rendering as text. */ |
︙ | ︙ | |||
126636 126637 126638 126639 126640 126641 126642 | /* ** The unhex() function. This function may be invoked with either one or ** two arguments. In both cases the first argument is interpreted as text ** a text value containing a set of pairs of hexadecimal digits which are ** decoded and returned as a blob. ** ** If there is only a single argument, then it must consist only of an | | | 127912 127913 127914 127915 127916 127917 127918 127919 127920 127921 127922 127923 127924 127925 127926 | /* ** The unhex() function. This function may be invoked with either one or ** two arguments. In both cases the first argument is interpreted as text ** a text value containing a set of pairs of hexadecimal digits which are ** decoded and returned as a blob. ** ** If there is only a single argument, then it must consist only of an ** even number of hexadecimal digits. Otherwise, return NULL. ** ** Or, if there is a second argument, then any character that appears in ** the second argument is also allowed to appear between pairs of hexadecimal ** digits in the first argument. If any other character appears in the ** first argument, or if one of the allowed characters appears between ** two hexadecimal digits that make up a single byte, NULL is returned. ** |
︙ | ︙ | |||
127026 127027 127028 127029 127030 127031 127032 | /* ** An instance of the following structure holds the context of a ** sum() or avg() aggregate computation. */ typedef struct SumCtx SumCtx; struct SumCtx { | | > | < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > | | > | > | > | > > > > > | < > | > | | < | > | > > > > | > | | | | > > > > > > > | > > > > > | > > | | 128302 128303 128304 128305 128306 128307 128308 128309 128310 128311 128312 128313 128314 128315 128316 128317 128318 128319 128320 128321 128322 128323 128324 128325 128326 128327 128328 128329 128330 128331 128332 128333 128334 128335 128336 128337 128338 128339 128340 128341 128342 128343 128344 128345 128346 128347 128348 128349 128350 128351 128352 128353 128354 128355 128356 128357 128358 128359 128360 128361 128362 128363 128364 128365 128366 128367 128368 128369 128370 128371 128372 128373 128374 128375 128376 128377 128378 128379 128380 128381 128382 128383 128384 128385 128386 128387 128388 128389 128390 128391 128392 128393 128394 128395 128396 128397 128398 128399 128400 128401 128402 128403 128404 128405 128406 128407 128408 128409 128410 128411 128412 128413 128414 128415 128416 128417 128418 128419 128420 128421 128422 128423 128424 128425 128426 128427 128428 128429 128430 128431 128432 128433 128434 128435 128436 128437 128438 128439 128440 128441 128442 128443 128444 128445 128446 128447 128448 128449 128450 128451 128452 128453 128454 128455 128456 128457 128458 128459 128460 128461 128462 128463 128464 128465 128466 128467 128468 128469 128470 128471 128472 128473 128474 128475 128476 128477 128478 128479 128480 128481 128482 128483 128484 128485 128486 128487 128488 128489 128490 128491 128492 128493 | /* ** An instance of the following structure holds the context of a ** sum() or avg() aggregate computation. */ typedef struct SumCtx SumCtx; struct SumCtx { double rSum; /* Running sum as as a double */ double rErr; /* Error term for Kahan-Babushka-Neumaier summation */ i64 iSum; /* Running sum as a signed integer */ i64 cnt; /* Number of elements summed */ u8 approx; /* True if any non-integer value was input to the sum */ u8 ovrfl; /* Integer overflow seen */ }; /* ** Do one step of the Kahan-Babushka-Neumaier summation. ** ** https://en.wikipedia.org/wiki/Kahan_summation_algorithm ** ** Variables are marked "volatile" to defeat c89 x86 floating point ** optimizations can mess up this algorithm. */ static void kahanBabuskaNeumaierStep( volatile SumCtx *pSum, volatile double r ){ volatile double s = pSum->rSum; volatile double t = s + r; if( fabs(s) > fabs(r) ){ pSum->rErr += (s - t) + r; }else{ pSum->rErr += (r - t) + s; } pSum->rSum = t; } /* ** Add a (possibly large) integer to the running sum. */ static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){ i64 iBig, iSm; iSm = iVal % 16384; iBig = iVal - iSm; kahanBabuskaNeumaierStep(pSum, iBig); kahanBabuskaNeumaierStep(pSum, iSm); }else{ kahanBabuskaNeumaierStep(pSum, (double)iVal); } } /* ** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer */ static void kahanBabuskaNeumaierInit( volatile SumCtx *p, i64 iVal ){ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){ i64 iSm = iVal % 16384; p->rSum = (double)(iVal - iSm); p->rErr = (double)iSm; }else{ p->rSum = (double)iVal; p->rErr = 0.0; } } /* ** Routines used to compute the sum, average, and total. ** ** The SUM() function follows the (broken) SQL standard which means ** that it returns NULL if it sums over no inputs. TOTAL returns ** 0.0 in that case. In addition, TOTAL always returns a float where ** SUM might return an integer if it never encounters a floating point ** value. TOTAL never fails, but SUM might through an exception if ** it overflows an integer. */ static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ SumCtx *p; int type; assert( argc==1 ); UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->cnt++; if( p->approx==0 ){ if( type!=SQLITE_INTEGER ){ kahanBabuskaNeumaierInit(p, p->iSum); p->approx = 1; kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0])); }else{ i64 x = p->iSum; if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){ p->iSum = x; }else{ p->ovrfl = 1; kahanBabuskaNeumaierInit(p, p->iSum); p->approx = 1; kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0])); } } }else{ if( type==SQLITE_INTEGER ){ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0])); }else{ p->ovrfl = 0; kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0])); } } } } #ifndef SQLITE_OMIT_WINDOWFUNC static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){ SumCtx *p; int type; assert( argc==1 ); UNUSED_PARAMETER(argc); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_numeric_type(argv[0]); /* p is always non-NULL because sumStep() will have been called first ** to initialize it */ if( ALWAYS(p) && type!=SQLITE_NULL ){ assert( p->cnt>0 ); p->cnt--; if( !p->approx ){ p->iSum -= sqlite3_value_int64(argv[0]); }else if( type==SQLITE_INTEGER ){ i64 iVal = sqlite3_value_int64(argv[0]); if( iVal!=SMALLEST_INT64 ){ kahanBabuskaNeumaierStepInt64(p, -iVal); }else{ kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64); kahanBabuskaNeumaierStepInt64(p, 1); } }else{ kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0])); } } } #else # define sumInverse 0 #endif /* SQLITE_OMIT_WINDOWFUNC */ static void sumFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ if( p->approx ){ if( p->ovrfl ){ sqlite3_result_error(context,"integer overflow",-1); }else{ sqlite3_result_double(context, p->rSum+p->rErr); } }else{ sqlite3_result_int64(context, p->iSum); } } } static void avgFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ double r; if( p->approx ){ r = p->rSum+p->rErr; }else{ r = (double)(p->iSum); } sqlite3_result_double(context, r/(double)p->cnt); } } static void totalFinalize(sqlite3_context *context){ SumCtx *p; double r = 0.0; p = sqlite3_aggregate_context(context, 0); if( p ){ if( p->approx ){ r = p->rSum+p->rErr; }else{ r = (double)(p->iSum); } } sqlite3_result_double(context, r); } /* ** The following structure keeps track of state information for the ** count() aggregate function. */ typedef struct CountCtx CountCtx; |
︙ | ︙ | |||
127336 127337 127338 127339 127340 127341 127342 | ){ GroupConcatCtx *pGCC; assert( argc==1 || argc==2 ); (void)argc; /* Suppress unused parameter warning */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); /* pGCC is always non-NULL since groupConcatStep() will have always | | | 128701 128702 128703 128704 128705 128706 128707 128708 128709 128710 128711 128712 128713 128714 128715 | ){ GroupConcatCtx *pGCC; assert( argc==1 || argc==2 ); (void)argc; /* Suppress unused parameter warning */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC)); /* pGCC is always non-NULL since groupConcatStep() will have always ** run first to initialize it */ if( ALWAYS(pGCC) ){ int nVS; /* Must call sqlite3_value_text() to convert the argument into text prior ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */ (void)sqlite3_value_text(argv[0]); nVS = sqlite3_value_bytes(argv[0]); pGCC->nAccum -= 1; |
︙ | ︙ | |||
127420 127421 127422 127423 127424 127425 127426 127427 127428 127429 127430 127431 127432 127433 127434 127435 | /* ** Re-register the built-in LIKE functions. The caseSensitive ** parameter determines whether or not the LIKE operator is case ** sensitive. */ SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ struct compareInfo *pInfo; int flags; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; flags = SQLITE_FUNC_LIKE; } | > > > | | | | > > | 128785 128786 128787 128788 128789 128790 128791 128792 128793 128794 128795 128796 128797 128798 128799 128800 128801 128802 128803 128804 128805 128806 128807 128808 128809 128810 128811 128812 128813 128814 128815 128816 | /* ** Re-register the built-in LIKE functions. The caseSensitive ** parameter determines whether or not the LIKE operator is case ** sensitive. */ SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ FuncDef *pDef; struct compareInfo *pInfo; int flags; int nArg; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; flags = SQLITE_FUNC_LIKE; } for(nArg=2; nArg<=3; nArg++){ sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0); pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0); pDef->funcFlags |= flags; pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE; } } /* ** pExpr points to an expression which implements a function. If ** it is appropriate to apply the LIKE optimization to that function ** then set aWc[0] through aWc[2] to the wildcard characters and the ** escape character and then return TRUE. If the function is not a |
︙ | ︙ | |||
127704 127705 127706 127707 127708 127709 127710 127711 127712 127713 127714 127715 127716 127717 | assert( argc==1 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; x = sqlite3_value_double(argv[0]); sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0); } /* ** All of the FuncDef structures in the aBuiltinFunc[] array above ** to the global function hash table. This occurs at start-time (as ** a consequence of calling sqlite3_initialize()). ** ** After this routine runs */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 129074 129075 129076 129077 129078 129079 129080 129081 129082 129083 129084 129085 129086 129087 129088 129089 129090 129091 129092 129093 129094 129095 129096 129097 129098 129099 129100 129101 129102 129103 129104 129105 129106 129107 129108 129109 129110 129111 129112 129113 129114 129115 129116 129117 129118 | assert( argc==1 ); type0 = sqlite3_value_numeric_type(argv[0]); if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return; x = sqlite3_value_double(argv[0]); sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0); } #ifdef SQLITE_DEBUG /* ** Implementation of fpdecode(x,y,z) function. ** ** x is a real number that is to be decoded. y is the precision. ** z is the maximum real precision. */ static void fpdecodeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ FpDecode s; double x; int y, z; char zBuf[100]; UNUSED_PARAMETER(argc); assert( argc==3 ); x = sqlite3_value_double(argv[0]); y = sqlite3_value_int(argv[1]); z = sqlite3_value_int(argv[2]); sqlite3FpDecode(&s, x, y, z); if( s.isSpecial==2 ){ sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN"); }else{ sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP); } sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); } #endif /* SQLITE_DEBUG */ /* ** All of the FuncDef structures in the aBuiltinFunc[] array above ** to the global function hash table. This occurs at start-time (as ** a consequence of calling sqlite3_initialize()). ** ** After this routine runs */ |
︙ | ︙ | |||
127768 127769 127770 127771 127772 127773 127774 127775 127776 127777 127778 127779 127780 127781 127782 127783 127784 127785 127786 127787 | FUNCTION(max, -1, 1, 1, minmaxFunc ), FUNCTION(max, 0, 1, 1, 0 ), WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), FUNCTION(instr, 2, 0, 0, instrFunc ), FUNCTION(printf, -1, 0, 0, printfFunc ), FUNCTION(format, -1, 0, 0, printfFunc ), FUNCTION(unicode, 1, 0, 0, unicodeFunc ), FUNCTION(char, -1, 0, 0, charFunc ), FUNCTION(abs, 1, 0, 0, absFunc ), #ifndef SQLITE_OMIT_FLOATING_POINT FUNCTION(round, 1, 0, 0, roundFunc ), FUNCTION(round, 2, 0, 0, roundFunc ), #endif FUNCTION(upper, 1, 0, 0, upperFunc ), FUNCTION(lower, 1, 0, 0, lowerFunc ), FUNCTION(hex, 1, 0, 0, hexFunc ), | > > > > | 129169 129170 129171 129172 129173 129174 129175 129176 129177 129178 129179 129180 129181 129182 129183 129184 129185 129186 129187 129188 129189 129190 129191 129192 | FUNCTION(max, -1, 1, 1, minmaxFunc ), FUNCTION(max, 0, 1, 1, 0 ), WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0, SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ), FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN), FUNCTION(instr, 2, 0, 0, instrFunc ), FUNCTION(printf, -1, 0, 0, printfFunc ), FUNCTION(format, -1, 0, 0, printfFunc ), FUNCTION(unicode, 1, 0, 0, unicodeFunc ), FUNCTION(char, -1, 0, 0, charFunc ), FUNCTION(abs, 1, 0, 0, absFunc ), #ifdef SQLITE_DEBUG FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ), #endif #ifndef SQLITE_OMIT_FLOATING_POINT FUNCTION(round, 1, 0, 0, roundFunc ), FUNCTION(round, 2, 0, 0, roundFunc ), #endif FUNCTION(upper, 1, 0, 0, upperFunc ), FUNCTION(lower, 1, 0, 0, lowerFunc ), FUNCTION(hex, 1, 0, 0, hexFunc ), |
︙ | ︙ | |||
129344 129345 129346 129347 129348 129349 129350 | assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); /* Remove the FK from the fkeyHash hash table. */ if( db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ | < | | | 130749 130750 130751 130752 130753 130754 130755 130756 130757 130758 130759 130760 130761 130762 130763 130764 | assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); /* Remove the FK from the fkeyHash hash table. */ if( db->pnBytesFreed==0 ){ if( pFKey->pPrevTo ){ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; }else{ const char *z = (pFKey->pNextTo ? pFKey->pNextTo->zTo : pFKey->zTo); sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, pFKey->pNextTo); } if( pFKey->pNextTo ){ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; } } /* EV: R-30323-21917 Each foreign key constraint in SQLite is |
︙ | ︙ | |||
129409 129410 129411 129412 129413 129414 129415 | int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; assert( !IsVirtual(pTab) ); assert( pParse->pVdbe!=0 ); v = pParse->pVdbe; assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); | > | | > | 130813 130814 130815 130816 130817 130818 130819 130820 130821 130822 130823 130824 130825 130826 130827 130828 130829 130830 | int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; assert( !IsVirtual(pTab) ); assert( pParse->pVdbe!=0 ); v = pParse->pVdbe; assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); if( !pParse->db->noSharedCache ){ sqlite3TableLock(pParse, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); } if( HasRowid(pTab) ){ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); VdbeComment((v, "%s", pTab->zName)); }else{ Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); |
︙ | ︙ | |||
129539 129540 129541 129542 129543 129544 129545 | ** 'C' NUMERIC ** 'D' INTEGER ** 'E' REAL ** ** For STRICT tables: ** ------------------ ** | | | 130945 130946 130947 130948 130949 130950 130951 130952 130953 130954 130955 130956 130957 130958 130959 | ** 'C' NUMERIC ** 'D' INTEGER ** 'E' REAL ** ** For STRICT tables: ** ------------------ ** ** Generate an appropriate OP_TypeCheck opcode that will verify the ** datatypes against the column definitions in pTab. If iReg==0, that ** means an OP_MakeRecord opcode has already been generated and should be ** the last opcode generated. The new OP_TypeCheck needs to be inserted ** before the OP_MakeRecord. The new OP_TypeCheck should use the same ** register set as the OP_MakeRecord. If iReg>0 then register iReg is ** the first of a series of registers that will form the new record. ** Apply the type checking to that array of registers. |
︙ | ︙ | |||
130831 130832 130833 130834 130835 130836 130837 | */ #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this ** expression node references any of the | | | 132237 132238 132239 132240 132241 132242 132243 132244 132245 132246 132247 132248 132249 132250 132251 | */ #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this ** expression node references any of the ** columns that are being modified by an UPDATE statement. */ static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN ){ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); if( pExpr->iColumn>=0 ){ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ pWalker->eCode |= CKCNSTRNT_COLUMN; |
︙ | ︙ | |||
131054 131055 131056 131057 131058 131059 131060 | u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ int *aiChng, /* column i is unchanged if aiChng[i]<0 */ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ ){ | | | 132460 132461 132462 132463 132464 132465 132466 132467 132468 132469 132470 132471 132472 132473 132474 | u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ u8 overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ int *aiChng, /* column i is unchanged if aiChng[i]<0 */ Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ ){ Vdbe *v; /* VDBE under construction */ Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ |
︙ | ︙ | |||
131537 131538 131539 131540 131541 131542 131543 | ** This loop also handles the case of the PRIMARY KEY index for a ** WITHOUT ROWID table. */ for(pIdx = indexIteratorFirst(&sIdxIter, &ix); pIdx; pIdx = indexIteratorNext(&sIdxIter, &ix) ){ | | | 132943 132944 132945 132946 132947 132948 132949 132950 132951 132952 132953 132954 132955 132956 132957 | ** This loop also handles the case of the PRIMARY KEY index for a ** WITHOUT ROWID table. */ for(pIdx = indexIteratorFirst(&sIdxIter, &ix); pIdx; pIdx = indexIteratorNext(&sIdxIter, &ix) ){ int regIdx; /* Range of registers holding content for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ int addrConflictCk; /* First opcode in the conflict check logic */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( pUpsert ){ |
︙ | ︙ | |||
132032 132033 132034 132035 132036 132037 132038 132039 132040 132041 132042 132043 132044 132045 132046 132047 132048 132049 132050 | int iDb; int iDataCur; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); assert( op==OP_OpenWrite || p5==0 ); if( IsVirtual(pTab) ){ /* This routine is a no-op for virtual tables. Leave the output ** variables *piDataCur and *piIdxCur set to illegal cursor numbers ** for improved error detection. */ *piDataCur = *piIdxCur = -999; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = pParse->pVdbe; assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; iDataCur = iBase++; | > > | | | | | 133438 133439 133440 133441 133442 133443 133444 133445 133446 133447 133448 133449 133450 133451 133452 133453 133454 133455 133456 133457 133458 133459 133460 133461 133462 133463 133464 133465 133466 133467 133468 133469 133470 133471 133472 133473 133474 133475 133476 133477 | int iDb; int iDataCur; Index *pIdx; Vdbe *v; assert( op==OP_OpenRead || op==OP_OpenWrite ); assert( op==OP_OpenWrite || p5==0 ); assert( piDataCur!=0 ); assert( piIdxCur!=0 ); if( IsVirtual(pTab) ){ /* This routine is a no-op for virtual tables. Leave the output ** variables *piDataCur and *piIdxCur set to illegal cursor numbers ** for improved error detection. */ *piDataCur = *piIdxCur = -999; return 0; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = pParse->pVdbe; assert( v!=0 ); if( iBase<0 ) iBase = pParse->nTab; iDataCur = iBase++; *piDataCur = iDataCur; if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); }else if( pParse->db->noSharedCache==0 ){ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); } *piIdxCur = iBase; for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ int iIdxCur = iBase++; assert( pIdx->pSchema==pTab->pSchema ); if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ *piDataCur = iIdxCur; p5 = 0; } if( aToOpen==0 || aToOpen[i+1] ){ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); sqlite3VdbeChangeP5(v, p5); VdbeComment((v, "%s", pIdx->zName)); |
︙ | ︙ | |||
132353 132354 132355 132356 132357 132358 132359 | } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY | | | 133761 133762 133763 133764 133765 133766 133767 133768 133769 133770 133771 133772 133773 133774 133775 | } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY /* Disallow the transfer optimization if the destination table contains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ assert( IsOrdinaryTable(pDest) ); |
︙ | ︙ | |||
133063 133064 133065 133066 133067 133068 133069 133070 133071 133072 133073 133074 133075 133076 | unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*, unsigned int); const char *(*db_name)(sqlite3*,int); /* Version 3.40.0 and later */ int (*value_encoding)(sqlite3_value*); /* Version 3.41.0 and later */ int (*is_interrupted)(sqlite3*); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( | > > | 134471 134472 134473 134474 134475 134476 134477 134478 134479 134480 134481 134482 134483 134484 134485 134486 | unsigned char *(*serialize)(sqlite3*,const char *,sqlite3_int64*, unsigned int); const char *(*db_name)(sqlite3*,int); /* Version 3.40.0 and later */ int (*value_encoding)(sqlite3_value*); /* Version 3.41.0 and later */ int (*is_interrupted)(sqlite3*); /* Version 3.43.0 and later */ int (*stmt_explain)(sqlite3_stmt*,int); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( |
︙ | ︙ | |||
133391 133392 133393 133394 133395 133396 133397 133398 133399 133400 133401 133402 133403 133404 | #define sqlite3_serialize sqlite3_api->serialize #endif #define sqlite3_db_name sqlite3_api->db_name /* Version 3.40.0 and later */ #define sqlite3_value_encoding sqlite3_api->value_encoding /* Version 3.41.0 and later */ #define sqlite3_is_interrupted sqlite3_api->is_interrupted #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; | > > | 134801 134802 134803 134804 134805 134806 134807 134808 134809 134810 134811 134812 134813 134814 134815 134816 | #define sqlite3_serialize sqlite3_api->serialize #endif #define sqlite3_db_name sqlite3_api->db_name /* Version 3.40.0 and later */ #define sqlite3_value_encoding sqlite3_api->value_encoding /* Version 3.41.0 and later */ #define sqlite3_is_interrupted sqlite3_api->is_interrupted /* Version 3.43.0 and later */ #define sqlite3_stmt_explain sqlite3_api->stmt_explain #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; |
︙ | ︙ | |||
133907 133908 133909 133910 133911 133912 133913 | 0, 0, #endif sqlite3_db_name, /* Version 3.40.0 and later */ sqlite3_value_encoding, /* Version 3.41.0 and later */ | | > > | 135319 135320 135321 135322 135323 135324 135325 135326 135327 135328 135329 135330 135331 135332 135333 135334 135335 | 0, 0, #endif sqlite3_db_name, /* Version 3.40.0 and later */ sqlite3_value_encoding, /* Version 3.41.0 and later */ sqlite3_is_interrupted, /* Version 3.43.0 and later */ sqlite3_stmt_explain }; /* True if x is the directory separator character */ #if SQLITE_OS_WIN # define DirSep(X) ((X)=='/'||(X)=='\\') #else |
︙ | ︙ | |||
133986 133987 133988 133989 133990 133991 133992 133993 133994 133995 133996 133997 133998 133999 | ** so limit the extension filename length to about twice that. ** https://sqlite.org/forum/forumpost/08a0d6d9bf ** ** Later (2023-03-25): Save an extra 6 bytes for the filename suffix. ** See https://sqlite.org/forum/forumpost/24083b579d. */ if( nMsg>SQLITE_MAX_PATHLEN ) goto extension_not_found; handle = sqlite3OsDlOpen(pVfs, zFile); #if SQLITE_OS_UNIX || SQLITE_OS_WIN for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){ char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]); if( zAltFile==0 ) return SQLITE_NOMEM_BKPT; if( nMsg+strlen(azEndings[ii])+1<=SQLITE_MAX_PATHLEN ){ | > > > > | 135400 135401 135402 135403 135404 135405 135406 135407 135408 135409 135410 135411 135412 135413 135414 135415 135416 135417 | ** so limit the extension filename length to about twice that. ** https://sqlite.org/forum/forumpost/08a0d6d9bf ** ** Later (2023-03-25): Save an extra 6 bytes for the filename suffix. ** See https://sqlite.org/forum/forumpost/24083b579d. */ if( nMsg>SQLITE_MAX_PATHLEN ) goto extension_not_found; /* Do not allow sqlite3_load_extension() to link to a copy of the ** running application, by passing in an empty filename. */ if( nMsg==0 ) goto extension_not_found; handle = sqlite3OsDlOpen(pVfs, zFile); #if SQLITE_OS_UNIX || SQLITE_OS_WIN for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){ char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]); if( zAltFile==0 ) return SQLITE_NOMEM_BKPT; if( nMsg+strlen(azEndings[ii])+1<=SQLITE_MAX_PATHLEN ){ |
︙ | ︙ | |||
135819 135820 135821 135822 135823 135824 135825 | /* ** PRAGMA [schema.]cache_spill ** PRAGMA cache_spill=BOOLEAN ** PRAGMA [schema.]cache_spill=N ** ** The first form reports the current local setting for the ** page cache spill size. The second form turns cache spill on | | | 137237 137238 137239 137240 137241 137242 137243 137244 137245 137246 137247 137248 137249 137250 137251 | /* ** PRAGMA [schema.]cache_spill ** PRAGMA cache_spill=BOOLEAN ** PRAGMA [schema.]cache_spill=N ** ** The first form reports the current local setting for the ** page cache spill size. The second form turns cache spill on ** or off. When turning cache spill on, the size is set to the ** current cache_size. The third form sets a spill size that ** may be different form the cache size. ** If N is positive then that is the ** number of pages in the cache. If N is negative, then the ** number of pages is adjusted so that the cache uses -N kibibytes ** of memory. ** |
︙ | ︙ | |||
136597 136598 136599 136600 136601 136602 136603 | ** PRAGMA quick_check(N) ** ** Verify the integrity of the database. ** ** The "quick_check" is reduced version of ** integrity_check designed to detect most database corruption ** without the overhead of cross-checking indexes. Quick_check | | | | 138015 138016 138017 138018 138019 138020 138021 138022 138023 138024 138025 138026 138027 138028 138029 138030 138031 | ** PRAGMA quick_check(N) ** ** Verify the integrity of the database. ** ** The "quick_check" is reduced version of ** integrity_check designed to detect most database corruption ** without the overhead of cross-checking indexes. Quick_check ** is linear time whereas integrity_check is O(NlogN). ** ** The maximum number of errors is 100 by default. A different default ** can be specified using a numeric parameter N. ** ** Or, the parameter N can be the name of a table. In that case, only ** the one table named is verified. The freelist is only verified if ** the named table is "sqlite_schema" (or one of its aliases). ** ** All schemas are checked by default. To check just a single |
︙ | ︙ | |||
137357 137358 137359 137360 137361 137362 137363 | case PragTyp_OPTIMIZE: { int iDbLast; /* Loop termination point for the schema loop */ int iTabCur; /* Cursor for a table whose size needs checking */ HashElem *k; /* Loop over tables of a schema */ Schema *pSchema; /* The current schema */ Table *pTab; /* A table in the schema */ Index *pIdx; /* An index of the table */ | | | 138775 138776 138777 138778 138779 138780 138781 138782 138783 138784 138785 138786 138787 138788 138789 | case PragTyp_OPTIMIZE: { int iDbLast; /* Loop termination point for the schema loop */ int iTabCur; /* Cursor for a table whose size needs checking */ HashElem *k; /* Loop over tables of a schema */ Schema *pSchema; /* The current schema */ Table *pTab; /* A table in the schema */ Index *pIdx; /* An index of the table */ LogEst szThreshold; /* Size threshold above which reanalysis needed */ char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ u32 opMask; /* Mask of operations to perform */ if( zRight ){ opMask = (u32)sqlite3Atoi(zRight); if( (opMask & 0x02)==0 ) break; }else{ |
︙ | ︙ | |||
138483 138484 138485 138486 138487 138488 138489 | /* ** Add a new cleanup operation to a Parser. The cleanup should happen when ** the parser object is destroyed. But, beware: the cleanup might happen ** immediately. ** ** Use this mechanism for uncommon cleanups. There is a higher setup | | | 139901 139902 139903 139904 139905 139906 139907 139908 139909 139910 139911 139912 139913 139914 139915 | /* ** Add a new cleanup operation to a Parser. The cleanup should happen when ** the parser object is destroyed. But, beware: the cleanup might happen ** immediately. ** ** Use this mechanism for uncommon cleanups. There is a higher setup ** cost for this mechanism (an extra malloc), so it should not be used ** for common cleanups that happen on most calls. But for less ** common cleanups, we save a single NULL-pointer comparison in ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count. ** ** If a memory allocation error occurs, then the cleanup happens immediately. ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the ** pParse->earlyCleanup flag is set in that case. Calling code show verify |
︙ | ︙ | |||
138575 138576 138577 138578 138579 138580 138581 | /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); sParse.pOuterParse = db->pParse; db->pParse = &sParse; sParse.db = db; | > | > > > > | 139993 139994 139995 139996 139997 139998 139999 140000 140001 140002 140003 140004 140005 140006 140007 140008 140009 140010 140011 140012 | /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); sParse.pOuterParse = db->pParse; db->pParse = &sParse; sParse.db = db; if( pReprepare ){ sParse.pReprepare = pReprepare; sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare); }else{ assert( sParse.pReprepare==0 ); } assert( ppStmt && *ppStmt==0 ); if( db->mallocFailed ){ sqlite3ErrorMsg(&sParse, "out of memory"); db->errCode = rc = SQLITE_NOMEM; goto end_prepare; } assert( sqlite3_mutex_held(db->mutex) ); |
︙ | ︙ | |||
139185 139186 139187 139188 139189 139190 139191 | ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT ** ** To preserve historical compatibly, SQLite also accepts a variety | | | 140608 140609 140610 140611 140612 140613 140614 140615 140616 140617 140618 140619 140620 140621 140622 | ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT ** ** To preserve historical compatibly, SQLite also accepts a variety ** of other non-standard and in many cases nonsensical join types. ** This routine makes as much sense at it can from the nonsense join ** type and returns a result. Examples of accepted nonsense join types ** include but are not limited to: ** ** INNER CROSS JOIN -> same as JOIN ** NATURAL CROSS JOIN -> same as NATURAL JOIN ** OUTER LEFT JOIN -> same as LEFT JOIN |
︙ | ︙ | |||
139456 139457 139458 139459 139460 139461 139462 | for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ Table *pRightTab = pRight->pTab; u32 joinType; if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; | | | 140879 140880 140881 140882 140883 140884 140885 140886 140887 140888 140889 140890 140891 140892 140893 | for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ Table *pRightTab = pRight->pTab; u32 joinType; if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; /* If this is a NATURAL join, synthesize an appropriate USING clause ** to specify which columns should be joined. */ if( pRight->fg.jointype & JT_NATURAL ){ IdList *pUsing = 0; if( pRight->fg.isUsing || pRight->u3.pOn ){ sqlite3ErrorMsg(pParse, "a NATURAL join may not have " "an ON or USING clause", 0); |
︙ | ︙ | |||
139672 139673 139674 139675 139676 139677 139678 | ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the ** SQLITE_ECEL_OMITREF optimization, or due to the | | | 141095 141096 141097 141098 141099 141100 141101 141102 141103 141104 141105 141106 141107 141108 141109 | ** by a prior OP_MakeRecord. In this case nData==1 and regData ** will be completely unrelated to regOrigData. ** (2) All output columns are included in the sort record. In that ** case regData==regOrigData. ** (3) Some output columns are omitted from the sort record due to ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the ** SQLITE_ECEL_OMITREF optimization, or due to the ** SortCtx.pDeferredRowLoad optimization. In any of these cases ** regOrigData is 0 to prevent this routine from trying to copy ** values that might not yet exist. */ assert( nData==1 || regData==regOrigData || regOrigData==0 ); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pSort->addrPush = sqlite3VdbeCurrentAddr(v); |
︙ | ︙ | |||
139728 139729 139730 139731 139732 139733 139734 | pOp->p2 = nKey + nData; pKI = pOp->p4.pKeyInfo; memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); testcase( pKI->nAllField > pKI->nKeyField+2 ); pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, pKI->nAllField-pKI->nKeyField-1); | | | 141151 141152 141153 141154 141155 141156 141157 141158 141159 141160 141161 141162 141163 141164 141165 | pOp->p2 = nKey + nData; pKI = pOp->p4.pKeyInfo; memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); testcase( pKI->nAllField > pKI->nKeyField+2 ); pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, pKI->nAllField-pKI->nKeyField-1); pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */ addrJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); pSort->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); if( iLimit ){ |
︙ | ︙ | |||
139822 139823 139824 139825 139826 139827 139828 | ** record formed by the current array of registers. If one is found, ** jump to VM address addrRepeat. Otherwise, insert a new record into ** the ephemeral cursor and proceed. ** ** The returned value in this case is a copy of parameter iTab. ** ** WHERE_DISTINCT_ORDERED: | | | 141245 141246 141247 141248 141249 141250 141251 141252 141253 141254 141255 141256 141257 141258 141259 | ** record formed by the current array of registers. If one is found, ** jump to VM address addrRepeat. Otherwise, insert a new record into ** the ephemeral cursor and proceed. ** ** The returned value in this case is a copy of parameter iTab. ** ** WHERE_DISTINCT_ORDERED: ** In this case rows are being delivered sorted order. The ephemeral ** table is not required. Instead, the current set of values ** is compared against previous row. If they match, the new row ** is not distinct and control jumps to VM address addrRepeat. Otherwise, ** the VM program proceeds with processing the new row. ** ** The returned value in this case is the register number of the first ** in an array of registers used to store the previous result row so that |
︙ | ︙ | |||
140251 140252 140253 140254 140255 140256 140257 140258 140259 140260 140261 140262 140263 140264 | case SRT_EphemTab: { int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); testcase( eDest==SRT_Fifo ); testcase( eDest==SRT_DistFifo ); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); #ifndef SQLITE_OMIT_CTE if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ | > > > > > > > > > > | 141674 141675 141676 141677 141678 141679 141680 141681 141682 141683 141684 141685 141686 141687 141688 141689 141690 141691 141692 141693 141694 141695 141696 141697 | case SRT_EphemTab: { int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); testcase( eDest==SRT_Fifo ); testcase( eDest==SRT_DistFifo ); sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG) /* A destination of SRT_Table and a non-zero iSDParm2 parameter means ** that this is an "UPDATE ... FROM" on a virtual table or view. In this ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC. ** This does not affect operation in any way - it just allows MakeRecord ** to process OPFLAG_NOCHANGE values without an assert() failing. */ if( eDest==SRT_Table && pDest->iSDParm2 ){ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); } #endif #ifndef SQLITE_OMIT_CTE if( eDest==SRT_DistFifo ){ /* If the destination is DistFifo, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ |
︙ | ︙ | |||
141054 141055 141056 141057 141058 141059 141060 | Table *pTab; SrcList *pTabList; ExprList *pEList; sqlite3 *db = pParse->db; int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ | < < < < < < < | 142487 142488 142489 142490 142491 142492 142493 142494 142495 142496 142497 142498 142499 142500 | Table *pTab; SrcList *pTabList; ExprList *pEList; sqlite3 *db = pParse->db; int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ if( pParse->colNamesSet ) return; /* Column names are determined by the left-most term of a compound select */ while( pSelect->pPrior ) pSelect = pSelect->pPrior; TREETRACE(0x80,pParse,pSelect,("generating column names\n")); pTabList = pSelect->pSrc; pEList = pSelect->pEList; assert( v!=0 ); |
︙ | ︙ | |||
141247 141248 141249 141250 141251 141252 141253 | } /* ** pTab is a transient Table object that represents a subquery of some ** kind (maybe a parenthesized subquery in the FROM clause of a larger ** query, or a VIEW, or a CTE). This routine computes type information ** for that Table object based on the Select object that implements the | | | 142673 142674 142675 142676 142677 142678 142679 142680 142681 142682 142683 142684 142685 142686 142687 | } /* ** pTab is a transient Table object that represents a subquery of some ** kind (maybe a parenthesized subquery in the FROM clause of a larger ** query, or a VIEW, or a CTE). This routine computes type information ** for that Table object based on the Select object that implements the ** subquery. For the purposes of this routine, "type information" means: ** ** * The datatype name, as it might appear in a CREATE TABLE statement ** * Which collating sequence to use for the column ** * The affinity of the column */ SQLITE_PRIVATE void sqlite3SubqueryColumnTypes( Parse *pParse, /* Parsing contexts */ |
︙ | ︙ | |||
141576 141577 141578 141579 141580 141581 141582 | int addrTop; /* Top of the loop */ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ int iCurrent = 0; /* The Current table */ int regCurrent; /* Register holding Current table */ int iQueue; /* The Queue table */ int iDistinct = 0; /* To ensure unique results if UNION */ int eDest = SRT_Fifo; /* How to write to Queue */ | | | 143002 143003 143004 143005 143006 143007 143008 143009 143010 143011 143012 143013 143014 143015 143016 | int addrTop; /* Top of the loop */ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ int iCurrent = 0; /* The Current table */ int regCurrent; /* Register holding Current table */ int iQueue; /* The Queue table */ int iDistinct = 0; /* To ensure unique results if UNION */ int eDest = SRT_Fifo; /* How to write to Queue */ SelectDest destQueue; /* SelectDest targeting the Queue table */ int i; /* Loop counter */ int rc; /* Result code */ ExprList *pOrderBy; /* The ORDER BY clause */ Expr *pLimit; /* Saved LIMIT and OFFSET */ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ #ifndef SQLITE_OMIT_WINDOWFUNC |
︙ | ︙ | |||
142176 142177 142178 142179 142180 142181 142182 | " do not have the same number of result columns", sqlite3SelectOpName(p->op)); } } /* ** Code an output subroutine for a coroutine implementation of a | | | 143602 143603 143604 143605 143606 143607 143608 143609 143610 143611 143612 143613 143614 143615 143616 | " do not have the same number of result columns", sqlite3SelectOpName(p->op)); } } /* ** Code an output subroutine for a coroutine implementation of a ** SELECT statement. ** ** The data to be output is contained in pIn->iSdst. There are ** pIn->nSdst columns to be output. pDest is where the output should ** be sent. ** ** regReturn is the number of the register holding the subroutine ** return address. |
︙ | ︙ | |||
142398 142399 142400 142401 142402 142403 142404 | ** if eof(B) goto EofB ** Cmpr: Compare A, B ** Jump AltB, AeqB, AgtB ** End: ... ** ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not ** actually called using Gosub and they do not Return. EofA and EofB loop | | | 143824 143825 143826 143827 143828 143829 143830 143831 143832 143833 143834 143835 143836 143837 143838 | ** if eof(B) goto EofB ** Cmpr: Compare A, B ** Jump AltB, AeqB, AgtB ** End: ... ** ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not ** actually called using Gosub and they do not Return. EofA and EofB loop ** until all data is exhausted then jump to the "end" label. AltB, AeqB, ** and AgtB jump to either L2 or to one of EofA or EofB. */ #ifndef SQLITE_OMIT_COMPOUND_SELECT static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ |
︙ | ︙ | |||
142435 142436 142437 142438 142439 142440 142441 | int regLimitA; /* Limit register for select-A */ int regLimitB; /* Limit register for select-A */ int regPrev; /* A range of registers to hold previous output */ int savedLimit; /* Saved value of p->iLimit */ int savedOffset; /* Saved value of p->iOffset */ int labelCmpr; /* Label for the start of the merge algorithm */ int labelEnd; /* Label for the end of the overall SELECT stmt */ | | | 143861 143862 143863 143864 143865 143866 143867 143868 143869 143870 143871 143872 143873 143874 143875 | int regLimitA; /* Limit register for select-A */ int regLimitB; /* Limit register for select-A */ int regPrev; /* A range of registers to hold previous output */ int savedLimit; /* Saved value of p->iLimit */ int savedOffset; /* Saved value of p->iOffset */ int labelCmpr; /* Label for the start of the merge algorithm */ int labelEnd; /* Label for the end of the overall SELECT stmt */ int addr1; /* Jump instructions that get retargeted */ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sqlite3 *db; /* Database connection */ ExprList *pOrderBy; /* The ORDER BY clause */ int nOrderBy; /* Number of terms in the ORDER BY clause */ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ |
︙ | ︙ | |||
142804 142805 142806 142807 142808 142809 142810 | #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else #endif { Expr *pNew; | | | > > > | 144230 144231 144232 144233 144234 144235 144236 144237 144238 144239 144240 144241 144242 144243 144244 144245 144246 144247 144248 144249 144250 144251 | #ifdef SQLITE_ALLOW_ROWID_IN_VIEW if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else #endif { Expr *pNew; int iColumn; Expr *pCopy; Expr ifNullRow; iColumn = pExpr->iColumn; assert( iColumn>=0 ); assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr ); assert( pExpr->pRight==0 ); pCopy = pSubst->pEList->a[iColumn].pExpr; if( sqlite3ExprIsVector(pCopy) ){ sqlite3VectorErrorMsg(pSubst->pParse, pCopy); }else{ sqlite3 *db = pSubst->pParse->db; if( pSubst->isOuterJoin && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable) ){ |
︙ | ︙ | |||
143157 143158 143159 143160 143161 143162 143163 | ** single NULL. ** ** (8) If the subquery uses LIMIT then the outer query may not be a join. ** ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we | | | 144586 144587 144588 144589 144590 144591 144592 144593 144594 144595 144596 144597 144598 144599 144600 | ** single NULL. ** ** (8) If the subquery uses LIMIT then the outer query may not be a join. ** ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidentally carried the comment forward until 2014-09-15. Original ** constraint: "If the subquery is aggregate then the outer query ** may not use LIMIT." ** ** (11) The subquery and the outer query may not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. |
︙ | ︙ | |||
143249 143250 143251 143252 143253 143254 143255 | ** ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it ** is the first element of the parent query. Two subcases: ** (27a) the subquery is not a compound query. ** (27b) the subquery is a compound query and the RIGHT JOIN occurs ** in any arm of the compound query. (See also (17g).) ** | | > | 144678 144679 144680 144681 144682 144683 144684 144685 144686 144687 144688 144689 144690 144691 144692 144693 | ** ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it ** is the first element of the parent query. Two subcases: ** (27a) the subquery is not a compound query. ** (27b) the subquery is a compound query and the RIGHT JOIN occurs ** in any arm of the compound query. (See also (17g).) ** ** (28) The subquery is not a MATERIALIZED CTE. (This is handled ** in the caller before ever reaching this routine.) ** ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. |
︙ | ︙ | |||
143359 143360 143361 143362 143363 143364 143365 | isOuterJoin = 1; } assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* Restriction (27a) */ } | < < | > > | 144789 144790 144791 144792 144793 144794 144795 144796 144797 144798 144799 144800 144801 144802 144803 144804 144805 | isOuterJoin = 1; } assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ return 0; /* Restriction (27a) */ } /* Condition (28) is blocked by the caller */ assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes ); /* Restriction (17): If the sub-query is a compound SELECT, then it must ** use only the UNION ALL operator. And none of the simple select queries ** that make up the compound SELECT are allowed to be aggregate or distinct ** queries. */ if( pSub->pPrior ){ |
︙ | ︙ | |||
143431 143432 143433 143434 143435 143436 143437 | /* Authorize the subquery */ pParse->zAuthContext = pSubitem->zName; TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); testcase( i==SQLITE_DENY ); pParse->zAuthContext = zSavedAuthContext; | | | 144861 144862 144863 144864 144865 144866 144867 144868 144869 144870 144871 144872 144873 144874 144875 | /* Authorize the subquery */ pParse->zAuthContext = pSubitem->zName; TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); testcase( i==SQLITE_DENY ); pParse->zAuthContext = zSavedAuthContext; /* Delete the transient structures associated with the subquery */ pSub1 = pSubitem->pSelect; sqlite3DbFree(db, pSubitem->zDatabase); sqlite3DbFree(db, pSubitem->zName); sqlite3DbFree(db, pSubitem->zAlias); pSubitem->zDatabase = 0; pSubitem->zName = 0; pSubitem->zAlias = 0; |
︙ | ︙ | |||
143613 143614 143615 143616 143617 143618 143619 | ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". */ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ /* At this point, any non-zero iOrderByCol values indicate that the ** ORDER BY column expression is identical to the iOrderByCol'th ** expression returned by SELECT statement pSub. Since these values ** do not necessarily correspond to columns in SELECT statement pParent, | | | 145043 145044 145045 145046 145047 145048 145049 145050 145051 145052 145053 145054 145055 145056 145057 | ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". */ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ /* At this point, any non-zero iOrderByCol values indicate that the ** ORDER BY column expression is identical to the iOrderByCol'th ** expression returned by SELECT statement pSub. Since these values ** do not necessarily correspond to columns in SELECT statement pParent, ** zero them before transferring the ORDER BY clause. ** ** Not doing this may cause an error if a subsequent call to this ** function attempts to flatten a compound sub-query into pParent ** (the only way this can happen is if the compound sub-query is ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ ExprList *pOrderBy = pSub->pOrderBy; for(i=0; i<pOrderBy->nExpr; i++){ |
︙ | ︙ | |||
143673 143674 143675 143676 143677 143678 143679 | /* Recompute the SrcItem.colUsed masks for the flattened ** tables. */ for(i=0; i<nSubSrc; i++){ recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); } } | | < | 145103 145104 145105 145106 145107 145108 145109 145110 145111 145112 145113 145114 145115 145116 145117 | /* Recompute the SrcItem.colUsed masks for the flattened ** tables. */ for(i=0; i<nSubSrc; i++){ recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); } } /* Finally, delete what is left of the subquery and return success. */ sqlite3AggInfoPersistWalkerInit(&w, pParse); sqlite3WalkSelect(&w,pSub1); sqlite3SelectDelete(db, pSub1); #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4 ){ |
︙ | ︙ | |||
143709 143710 143711 143712 143713 143714 143715 | u32 mExcludeOn; /* Which ON expressions to exclude from considertion. ** Either EP_OuterON or EP_InnerON|EP_OuterON */ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ }; /* ** Add a new entry to the pConst object. Except, do not add duplicate | | | 145138 145139 145140 145141 145142 145143 145144 145145 145146 145147 145148 145149 145150 145151 145152 | u32 mExcludeOn; /* Which ON expressions to exclude from considertion. ** Either EP_OuterON or EP_InnerON|EP_OuterON */ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ }; /* ** Add a new entry to the pConst object. Except, do not add duplicate ** pColumn entries. Also, do not add if doing so would not be appropriate. ** ** The caller guarantees the pColumn is a column and pValue is a constant. ** This routine has to do some additional checks before completing the ** insert. */ static void constInsert( WhereConst *pConst, /* The WhereConst into which we are inserting */ |
︙ | ︙ | |||
143895 143896 143897 143898 143899 143900 143901 | ** ** CREATE TABLE t1(a INT,b TEXT); ** INSERT INTO t1 VALUES(123,'0123'); ** SELECT * FROM t1 WHERE a=123 AND b=a; ** SELECT * FROM t1 WHERE a=123 AND b=123; ** ** The two SELECT statements above should return different answers. b=a | | | 145324 145325 145326 145327 145328 145329 145330 145331 145332 145333 145334 145335 145336 145337 145338 | ** ** CREATE TABLE t1(a INT,b TEXT); ** INSERT INTO t1 VALUES(123,'0123'); ** SELECT * FROM t1 WHERE a=123 AND b=a; ** SELECT * FROM t1 WHERE a=123 AND b=123; ** ** The two SELECT statements above should return different answers. b=a ** is always true because the comparison uses numeric affinity, but b=123 ** is false because it uses text affinity and '0123' is not the same as '123'. ** To work around this, the expression tree is not actually changed from ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol ** and the "123" value is hung off of the pLeft pointer. Code generator ** routines know to generate the constant "123" instead of looking up the ** column value. Also, to avoid collation problems, this optimization is ** only attempted if the "a=123" term uses the default BINARY collation. |
︙ | ︙ | |||
143979 143980 143981 143982 143983 143984 143985 | ** BY clause of all window function used by the sub-query. It is safe ** to filter out entire partitions, but not rows within partitions, as ** this may change the results of the window functions. ** ** At the time this function is called it is guaranteed that ** ** * the sub-query uses only one distinct window frame, and | | | 145408 145409 145410 145411 145412 145413 145414 145415 145416 145417 145418 145419 145420 145421 145422 | ** BY clause of all window function used by the sub-query. It is safe ** to filter out entire partitions, but not rows within partitions, as ** this may change the results of the window functions. ** ** At the time this function is called it is guaranteed that ** ** * the sub-query uses only one distinct window frame, and ** * that the window frame has a PARTITION BY clause. */ static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ assert( pSubq->pWin->pPartition ); assert( (pSubq->selFlags & SF_MultiPart)==0 ); assert( pSubq->pPrior==0 ); return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); } |
︙ | ︙ | |||
144060 144061 144062 144063 144064 144065 144066 144067 144068 144069 144070 144071 144072 144073 144074 | ** be materialized. (This restriction is implemented in the calling ** routine.) ** ** (8) If the subquery is a compound that uses UNION, INTERSECT, ** or EXCEPT, then all of the result set columns for all arms of ** the compound must use the BINARY collating sequence. ** ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( Parse *pParse, /* Parse context (for malloc() and error reporting) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ | > > > > > > > > > > > > > > > > > > > | > > | > > | > > | 145489 145490 145491 145492 145493 145494 145495 145496 145497 145498 145499 145500 145501 145502 145503 145504 145505 145506 145507 145508 145509 145510 145511 145512 145513 145514 145515 145516 145517 145518 145519 145520 145521 145522 145523 145524 145525 145526 145527 145528 145529 145530 145531 145532 145533 145534 145535 145536 145537 145538 145539 145540 145541 145542 | ** be materialized. (This restriction is implemented in the calling ** routine.) ** ** (8) If the subquery is a compound that uses UNION, INTERSECT, ** or EXCEPT, then all of the result set columns for all arms of ** the compound must use the BINARY collating sequence. ** ** (9) All three of the following are true: ** ** (9a) The WHERE clause expression originates in the ON or USING clause ** of a join (either an INNER or an OUTER join), and ** ** (9b) The subquery is to the right of the ON/USING clause ** ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING ** clause and the subquery. ** ** Without this restriction, the push-down optimization might move ** the ON/USING filter expression from the left side of a RIGHT JOIN ** over to the right side, which leads to incorrect answers. See ** also restriction (6) in sqlite3ExprIsSingleTableConstraint(). ** ** (10) The inner query is not the right-hand table of a RIGHT JOIN. ** ** (11) The subquery is not a VALUES clause ** ** Return 0 if no changes are made and non-zero if one or more WHERE clause ** terms are duplicated into the subquery. */ static int pushDownWhereTerms( Parse *pParse, /* Parse context (for malloc() and error reporting) */ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ Expr *pWhere, /* The WHERE clause of the outer query */ SrcList *pSrcList, /* The complete from clause of the outer query */ int iSrc /* Which FROM clause term to try to push into */ ){ Expr *pNew; SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */ int nChng = 0; pSrc = &pSrcList->a[iSrc]; if( pWhere==0 ) return 0; if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){ return 0; /* restrictions (2) and (11) */ } if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){ return 0; /* restrictions (10) */ } if( pSubq->pPrior ){ Select *pSel; int notUnionAll = 0; for(pSel=pSubq; pSel; pSel=pSel->pPrior){ u8 op = pSel->op; assert( op==TK_ALL || op==TK_SELECT |
︙ | ︙ | |||
144129 144130 144131 144132 144133 144134 144135 | } #endif if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ | | | > > > > > > > > > > > > > > > > > | | 145583 145584 145585 145586 145587 145588 145589 145590 145591 145592 145593 145594 145595 145596 145597 145598 145599 145600 145601 145602 145603 145604 145605 145606 145607 145608 145609 145610 145611 145612 145613 145614 145615 145616 145617 145618 145619 145620 145621 145622 145623 145624 145625 145626 145627 145628 145629 145630 145631 145632 | } #endif if( pSubq->pLimit!=0 ){ return 0; /* restriction (3) */ } while( pWhere->op==TK_AND ){ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc); pWhere = pWhere->pLeft; } #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */ if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */ && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */ ){ int jj; for(jj=0; jj<iSrc; jj++){ if( pWhere->w.iJoin==pSrcList->a[jj].iCursor ){ /* If we reach this point, both (9a) and (9b) are satisfied. ** The following loop checks (9c): */ for(jj++; jj<iSrc; jj++){ if( (pSrcList->a[jj].fg.jointype & JT_RIGHT)!=0 ){ return 0; /* restriction (9) */ } } } } } if( isLeftJoin && (ExprHasProperty(pWhere,EP_OuterON)==0 || pWhere->w.iJoin!=iCursor) ){ return 0; /* restriction (4) */ } if( ExprHasProperty(pWhere,EP_OuterON) && pWhere->w.iJoin!=iCursor ){ return 0; /* restriction (5) */ } #endif if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc) ){ nChng++; pSubq->selFlags |= SF_PushDown; while( pSubq ){ SubstContext x; pNew = sqlite3ExprDup(pParse->db, pWhere, 0); unsetJoinExpr(pNew, -1, 1); x.pParse = pParse; |
︙ | ︙ | |||
145017 145018 145019 145020 145021 145022 145023 145024 145025 145026 145027 145028 145029 145030 145031 145032 145033 145034 | } a[k].pExpr = 0; }else{ /* This expression is a "*" or a "TABLE.*" and needs to be ** expanded. */ int tableSeen = 0; /* Set to 1 when TABLE matches */ char *zTName = 0; /* text of name of TABLE */ if( pE->op==TK_DOT ){ assert( pE->pLeft!=0 ); assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); zTName = pE->pLeft->u.zToken; } for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; /* Table for this data source */ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ char *zTabName; /* AS name for this data source */ const char *zSchemaName = 0; /* Schema name for this data source */ int iDb; /* Schema index for this data src */ | > > > > > > | 146488 146489 146490 146491 146492 146493 146494 146495 146496 146497 146498 146499 146500 146501 146502 146503 146504 146505 146506 146507 146508 146509 146510 146511 | } a[k].pExpr = 0; }else{ /* This expression is a "*" or a "TABLE.*" and needs to be ** expanded. */ int tableSeen = 0; /* Set to 1 when TABLE matches */ char *zTName = 0; /* text of name of TABLE */ int iErrOfst; if( pE->op==TK_DOT ){ assert( pE->pLeft!=0 ); assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); zTName = pE->pLeft->u.zToken; assert( ExprUseWOfst(pE->pLeft) ); iErrOfst = pE->pRight->w.iOfst; }else{ assert( ExprUseWOfst(pE) ); iErrOfst = pE->w.iOfst; } for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; /* Table for this data source */ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ char *zTabName; /* AS name for this data source */ const char *zSchemaName = 0; /* Schema name for this data source */ int iDb; /* Schema index for this data src */ |
︙ | ︙ | |||
145057 145058 145059 145060 145061 145062 145063 145064 145065 145066 145067 145068 145069 145070 | && (selFlags & SF_NestedFrom)!=0 ){ int ii; pUsing = pFrom[1].u3.pUsing; for(ii=0; ii<pUsing->nId; ii++){ const char *zUName = pUsing->a[ii].zName; pRight = sqlite3Expr(db, TK_ID, zUName); pNew = sqlite3ExprListAppend(pParse, pNew, pRight); if( pNew ){ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); pX->zEName = sqlite3MPrintf(db,"..%s", zUName); pX->fg.eEName = ENAME_TAB; pX->fg.bUsingTerm = 1; | > | 146534 146535 146536 146537 146538 146539 146540 146541 146542 146543 146544 146545 146546 146547 146548 | && (selFlags & SF_NestedFrom)!=0 ){ int ii; pUsing = pFrom[1].u3.pUsing; for(ii=0; ii<pUsing->nId; ii++){ const char *zUName = pUsing->a[ii].zName; pRight = sqlite3Expr(db, TK_ID, zUName); sqlite3ExprSetErrorOffset(pRight, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pRight); if( pNew ){ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); pX->zEName = sqlite3MPrintf(db,"..%s", zUName); pX->fg.eEName = ENAME_TAB; pX->fg.bUsingTerm = 1; |
︙ | ︙ | |||
145129 145130 145131 145132 145133 145134 145135 145136 145137 145138 145139 145140 145141 145142 | if( zSchemaName ){ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); } }else{ pExpr = pRight; } pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); if( pNew==0 ){ break; /* OOM */ } pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ | > | 146607 146608 146609 146610 146611 146612 146613 146614 146615 146616 146617 146618 146619 146620 146621 | if( zSchemaName ){ pLeft = sqlite3Expr(db, TK_ID, zSchemaName); pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); } }else{ pExpr = pRight; } sqlite3ExprSetErrorOffset(pExpr, iErrOfst); pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); if( pNew==0 ){ break; /* OOM */ } pX = &pNew->a[pNew->nExpr-1]; assert( pX->zEName==0 ); if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ |
︙ | ︙ | |||
145445 145446 145447 145448 145449 145450 145451 | pAggInfo = pExpr->pAggInfo; if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue; assert( pExpr->iAgg>=0 ); pCol = &pAggInfo->aCol[pExpr->iAgg]; pExpr->op = TK_AGG_COLUMN; pExpr->iTable = pCol->iTable; pExpr->iColumn = pCol->iColumn; | | | 146924 146925 146926 146927 146928 146929 146930 146931 146932 146933 146934 146935 146936 146937 146938 | pAggInfo = pExpr->pAggInfo; if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue; assert( pExpr->iAgg>=0 ); pCol = &pAggInfo->aCol[pExpr->iAgg]; pExpr->op = TK_AGG_COLUMN; pExpr->iTable = pCol->iTable; pExpr->iColumn = pCol->iColumn; ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely); return WRC_Prune; } /* ** Convert every pAggInfo->aFunc[].pExpr such that any node within ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN ** opcode. |
︙ | ︙ | |||
145476 145477 145478 145479 145480 145481 145482 | ** ** This routine may only be called once for each AggInfo object. Prior ** to calling this routine: ** ** * The aCol[] and aFunc[] arrays may be modified ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used ** | | | 146955 146956 146957 146958 146959 146960 146961 146962 146963 146964 146965 146966 146967 146968 146969 | ** ** This routine may only be called once for each AggInfo object. Prior ** to calling this routine: ** ** * The aCol[] and aFunc[] arrays may be modified ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used ** ** After calling this routine: ** ** * The aCol[] and aFunc[] arrays are fixed ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used ** */ static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){ assert( pAggInfo!=0 ); |
︙ | ︙ | |||
146130 146131 146132 146133 146134 146135 146136 | Table *pTab = pItem->pTab; /* The expander should have already created transient Table objects ** even for FROM clause elements such as subqueries that do not correspond ** to a real table */ assert( pTab!=0 ); | > > | > > > | > > > | | > > > | > > > > | | > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | 147609 147610 147611 147612 147613 147614 147615 147616 147617 147618 147619 147620 147621 147622 147623 147624 147625 147626 147627 147628 147629 147630 147631 147632 147633 147634 147635 147636 147637 147638 147639 147640 147641 147642 147643 147644 147645 147646 147647 147648 147649 147650 147651 147652 147653 147654 147655 147656 147657 147658 147659 147660 147661 147662 147663 147664 147665 147666 147667 147668 147669 147670 147671 147672 147673 147674 147675 147676 147677 147678 147679 147680 147681 147682 147683 147684 147685 147686 147687 147688 147689 147690 147691 147692 | Table *pTab = pItem->pTab; /* The expander should have already created transient Table objects ** even for FROM clause elements such as subqueries that do not correspond ** to a real table */ assert( pTab!=0 ); /* Try to simplify joins: ** ** LEFT JOIN -> JOIN ** RIGHT JOIN -> JOIN ** FULL JOIN -> RIGHT JOIN ** ** If terms of the i-th table are used in the WHERE clause in such a ** way that the i-th table cannot be the NULL row of a join, then ** perform the appropriate simplification. This is called ** "OUTER JOIN strength reduction" in the SQLite documentation. */ if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor, pItem->fg.jointype & JT_LTORJ) && OptimizationEnabled(db, SQLITE_SimplifyJoin) ){ if( pItem->fg.jointype & JT_LEFT ){ if( pItem->fg.jointype & JT_RIGHT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i)); pItem->fg.jointype &= ~JT_LEFT; }else{ TREETRACE(0x1000,pParse,p, ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); } } if( pItem->fg.jointype & JT_LTORJ ){ for(j=i+1; j<pTabList->nSrc; j++){ SrcItem *pI2 = &pTabList->a[j]; if( pI2->fg.jointype & JT_RIGHT ){ if( pI2->fg.jointype & JT_LEFT ){ TREETRACE(0x1000,pParse,p, ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j)); pI2->fg.jointype &= ~JT_RIGHT; }else{ TREETRACE(0x1000,pParse,p, ("RIGHT-JOIN simplifies to JOIN on term %d\n",j)); pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER); } } } for(j=pTabList->nSrc-1; j>=i; j--){ pTabList->a[j].fg.jointype &= ~JT_LTORJ; if( pTabList->a[j].fg.jointype & JT_RIGHT ) break; } } assert( pItem->iCursor>=0 ); unsetJoinExpr(p->pWhere, pItem->iCursor, pTabList->a[0].fg.jointype & JT_LTORJ); } /* No further action if this term of the FROM clause is not a subquery */ if( pSub==0 ) continue; /* Catch mismatch in the declared columns of a view and the number of ** columns in the SELECT on the RHS */ if( pTab->nCol!=pSub->pEList->nExpr ){ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", pTab->nCol, pTab->zName, pSub->pEList->nExpr); goto select_end; } /* Do not attempt the usual optimizations (flattening and ORDER BY ** elimination) on a MATERIALIZED common table expression because ** a MATERIALIZED common table expression is an optimization fence. */ if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){ continue; } /* Do not try to flatten an aggregate subquery. ** ** Flattening an aggregate subquery is only possible if the outer query ** is not a join. But if the outer query is not a join, then the subquery ** will be implemented as a co-routine and there is no advantage to ** flattening in that case. |
︙ | ︙ | |||
146185 146186 146187 146188 146189 146190 146191 146192 146193 146194 146195 146196 146197 146198 | ** (4) The outer query uses an aggregate function other than ** the built-in count(), min(), or max(). ** (5) The ORDER BY isn't going to accomplish anything because ** one of: ** (a) The outer query has a different ORDER BY clause ** (b) The subquery is part of a join ** See forum post 062d576715d277c8 */ if( pSub->pOrderBy!=0 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ && pSub->pLimit==0 /* Condition (1) */ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ && OptimizationEnabled(db, SQLITE_OmitOrderBy) | > > | 147709 147710 147711 147712 147713 147714 147715 147716 147717 147718 147719 147720 147721 147722 147723 147724 | ** (4) The outer query uses an aggregate function other than ** the built-in count(), min(), or max(). ** (5) The ORDER BY isn't going to accomplish anything because ** one of: ** (a) The outer query has a different ORDER BY clause ** (b) The subquery is part of a join ** See forum post 062d576715d277c8 ** ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled. */ if( pSub->pOrderBy!=0 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ && pSub->pLimit==0 /* Condition (1) */ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ && OptimizationEnabled(db, SQLITE_OmitOrderBy) |
︙ | ︙ | |||
146342 146343 146344 146345 146346 146347 146348 | /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( OptimizationEnabled(db, SQLITE_PushDown) && (pItem->fg.isCte==0 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) | | | 147868 147869 147870 147871 147872 147873 147874 147875 147876 147877 147878 147879 147880 147881 147882 | /* Make copies of constant WHERE-clause terms in the outer query down ** inside the subquery. This can help the subquery to run more efficiently. */ if( OptimizationEnabled(db, SQLITE_PushDown) && (pItem->fg.isCte==0 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i) ){ #if TREETRACE_ENABLED if( sqlite3TreeTrace & 0x4000 ){ TREETRACE(0x4000,pParse,p, ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); sqlite3TreeViewSelect(0, p, 0); } |
︙ | ︙ | |||
146399 146400 146401 146402 146403 146404 146405 | pItem->regResult = dest.iSdst; sqlite3VdbeEndCoroutine(v, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ /* This is a CTE for which materialization code has already been ** generated. Invoke the subroutine to compute the materialization, | | | 147925 147926 147927 147928 147929 147930 147931 147932 147933 147934 147935 147936 147937 147938 147939 | pItem->regResult = dest.iSdst; sqlite3VdbeEndCoroutine(v, pItem->regReturn); sqlite3VdbeJumpHere(v, addrTop-1); sqlite3ClearTempRegCache(pParse); }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ /* This is a CTE for which materialization code has already been ** generated. Invoke the subroutine to compute the materialization, ** the make the pItem->iCursor be a copy of the ephemeral table that ** holds the result of the materialization. */ CteUse *pCteUse = pItem->u2.pCteUse; sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); if( pItem->iCursor!=pCteUse->iCur ){ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); VdbeComment((v, "%!S", pItem)); } |
︙ | ︙ | |||
146782 146783 146784 146785 146786 146787 146788 | /* Processing for aggregates with GROUP BY is very different and ** much more complex than aggregates without a GROUP BY. */ if( pGroupBy ){ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ | | | 148308 148309 148310 148311 148312 148313 148314 148315 148316 148317 148318 148319 148320 148321 148322 | /* Processing for aggregates with GROUP BY is very different and ** much more complex than aggregates without a GROUP BY. */ if( pGroupBy ){ KeyInfo *pKeyInfo; /* Keying information for the group by clause */ int addr1; /* A-vs-B comparison jump */ int addrOutputRow; /* Start of subroutine that outputs a result row */ int regOutputRow; /* Return address register for output subroutine */ int addrSetAbort; /* Set the abort flag and return */ int addrTopOfLoop; /* Top of the input loop */ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ int addrReset; /* Subroutine for resetting the accumulator */ int regReset; /* Return address register for reset subroutine */ |
︙ | ︙ | |||
146873 146874 146875 146876 146877 146878 146879 | ** in sorted order */ int regBase; int regRecord; int nCol; int nGroupBy; | > | > > | > | 148399 148400 148401 148402 148403 148404 148405 148406 148407 148408 148409 148410 148411 148412 148413 148414 148415 148416 148417 148418 148419 | ** in sorted order */ int regBase; int regRecord; int nCol; int nGroupBy; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp; /* Address of OP_Explain instruction */ #endif ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s", (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? "DISTINCT" : "GROUP BY" )); groupBySort = 1; nGroupBy = pGroupBy->nExpr; nCol = nGroupBy; j = nGroupBy; for(i=0; i<pAggInfo->nColumn; i++){ if( pAggInfo->aCol[i].iSorterColumn>=j ){ |
︙ | ︙ | |||
146900 146901 146902 146903 146904 146905 146906 146907 146908 146909 146910 146911 146912 146913 146914 146915 146916 146917 146918 146919 146920 146921 146922 146923 146924 146925 | if( pCol->iSorterColumn>=j ){ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); j++; } } pAggInfo->directMode = 0; regRecord = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); pAggInfo->useSortingIdx = 1; } /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions ** that are indexed (and that were previously identified and tagged ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions ** must now be converted into a TK_AGG_COLUMN node so that the value ** is correctly pulled from the index rather than being recomputed. */ | > > > > > | 148430 148431 148432 148433 148434 148435 148436 148437 148438 148439 148440 148441 148442 148443 148444 148445 148446 148447 148448 148449 148450 148451 148452 148453 148454 148455 148456 148457 148458 148459 148460 | if( pCol->iSorterColumn>=j ){ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); j++; } } pAggInfo->directMode = 0; regRecord = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); TREETRACE(0x2,pParse,p,("WhereEnd\n")); sqlite3WhereEnd(pWInfo); pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); pAggInfo->useSortingIdx = 1; sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab); sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx); } /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions ** that are indexed (and that were previously identified and tagged ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions ** must now be converted into a TK_AGG_COLUMN node so that the value ** is correctly pulled from the index rather than being recomputed. */ |
︙ | ︙ | |||
149162 149163 149164 149165 149166 149167 149168 | #endif pSrc = sqlite3SrcListDup(db, pTabList, 0); pWhere2 = sqlite3ExprDup(db, pWhere, 0); assert( pTabList->nSrc>1 ); if( pSrc ){ | | | 150697 150698 150699 150700 150701 150702 150703 150704 150705 150706 150707 150708 150709 150710 150711 | #endif pSrc = sqlite3SrcListDup(db, pTabList, 0); pWhere2 = sqlite3ExprDup(db, pWhere, 0); assert( pTabList->nSrc>1 ); if( pSrc ){ assert( pSrc->a[0].fg.notCte ); pSrc->a[0].iCursor = -1; pSrc->a[0].pTab->nTabRef--; pSrc->a[0].pTab = 0; } if( pPk ){ for(i=0; i<pPk->nKeyCol; i++){ Expr *pNew = exprRowColumn(pParse, pPk->aiColumn[i]); |
︙ | ︙ | |||
149679 149680 149681 149682 149683 149684 149685 | */ flags = WHERE_ONEPASS_DESIRED; if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace | | | 151214 151215 151216 151217 151218 151219 151220 151221 151222 151223 151224 151225 151226 151227 151228 | */ flags = WHERE_ONEPASS_DESIRED; if( !pParse->nested && !pTrigger && !hasFK && !chngKey && !bReplace && (pWhere==0 || !ExprHasProperty(pWhere, EP_Subquery)) ){ flags |= WHERE_ONEPASS_MULTIROW; } pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,0,0,flags,iIdxCur); if( pWInfo==0 ) goto update_cleanup; /* A one-pass strategy that might update more than one row may not |
︙ | ︙ | |||
149751 149752 149753 149754 149755 149756 149757 149758 149759 149760 149761 149762 149763 149764 149765 149766 149767 149768 | if( pUpsert==0 ){ if( nChangeFrom==0 && eOnePass!=ONEPASS_MULTI ){ sqlite3WhereEnd(pWInfo); } if( !isView ){ int addrOnce = 0; /* Open every index that needs updating. */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, | > > | | 151286 151287 151288 151289 151290 151291 151292 151293 151294 151295 151296 151297 151298 151299 151300 151301 151302 151303 151304 151305 151306 151307 151308 151309 151310 151311 151312 151313 | if( pUpsert==0 ){ if( nChangeFrom==0 && eOnePass!=ONEPASS_MULTI ){ sqlite3WhereEnd(pWInfo); } if( !isView ){ int addrOnce = 0; int iNotUsed1 = 0; int iNotUsed2 = 0; /* Open every index that needs updating. */ if( eOnePass!=ONEPASS_OFF ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } if( eOnePass==ONEPASS_MULTI && (nIdx-(aiCurOnePass[1]>=0))>0 ){ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen, &iNotUsed1, &iNotUsed2); if( addrOnce ){ sqlite3VdbeJumpHereOrPopInst(v, addrOnce); } } /* Top of the update loop */ if( eOnePass!=ONEPASS_OFF ){ |
︙ | ︙ | |||
150053 150054 150055 150056 150057 150058 150059 | /* Increment the row counter */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } | > | | > | 151590 151591 151592 151593 151594 151595 151596 151597 151598 151599 151600 151601 151602 151603 151604 151605 151606 151607 | /* Increment the row counter */ if( regRowCount ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue); } /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( eOnePass==ONEPASS_SINGLE ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( eOnePass==ONEPASS_MULTI ){ |
︙ | ︙ | |||
150149 150150 150151 150152 150153 150154 150155 | int i; /* Loop counter */ sqlite3 *db = pParse->db; /* Database connection */ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab); WhereInfo *pWInfo = 0; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ | | | 151688 151689 151690 151691 151692 151693 151694 151695 151696 151697 151698 151699 151700 151701 151702 | int i; /* Loop counter */ sqlite3 *db = pParse->db; /* Database connection */ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab); WhereInfo *pWInfo = 0; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ int regRowid; /* Register for ephemeral table rowid */ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */ int eOnePass; /* True to use onepass strategy */ int addr; /* Address of OP_OpenEphemeral */ /* Allocate nArg registers in which to gather the arguments for VUpdate. Then ** create and open the ephemeral table in which the records created from |
︙ | ︙ | |||
150193 150194 150195 150196 150197 150198 150199 | for(i=0; i<pTab->nCol; i++){ if( aXRef[i]>=0 ){ pList = sqlite3ExprListAppend(pParse, pList, sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0) ); }else{ | > > | | 151732 151733 151734 151735 151736 151737 151738 151739 151740 151741 151742 151743 151744 151745 151746 151747 151748 | for(i=0; i<pTab->nCol; i++){ if( aXRef[i]>=0 ){ pList = sqlite3ExprListAppend(pParse, pList, sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0) ); }else{ Expr *pRowExpr = exprRowColumn(pParse, i); if( pRowExpr ) pRowExpr->op2 = OPFLAG_NOCHNG; pList = sqlite3ExprListAppend(pParse, pList, pRowExpr); } } updateFromSelect(pParse, ephemTab, pPk, pList, pSrc, pWhere, 0, 0); sqlite3ExprListDelete(db, pList); eOnePass = ONEPASS_OFF; }else{ |
︙ | ︙ | |||
150270 150271 150272 150273 150274 150275 150276 | if( eOnePass==ONEPASS_OFF ){ /* End the virtual table scan */ if( pSrc->nSrc==1 ){ sqlite3WhereEnd(pWInfo); } | | | 151811 151812 151813 151814 151815 151816 151817 151818 151819 151820 151821 151822 151823 151824 151825 | if( eOnePass==ONEPASS_OFF ){ /* End the virtual table scan */ if( pSrc->nSrc==1 ){ sqlite3WhereEnd(pWInfo); } /* Begin scanning through the ephemeral table. */ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v); /* Extract arguments from the current row of the ephemeral table and ** invoke the VUpdate method. */ for(i=0; i<nArg; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i); } |
︙ | ︙ | |||
150478 150479 150480 150481 150482 150483 150484 | } }else{ sCol[0].pLeft = &sCol[1]; sCol[1].iColumn = pIdx->aiColumn[ii]; pExpr = &sCol[0]; } for(jj=0; jj<nn; jj++){ | | | 152019 152020 152021 152022 152023 152024 152025 152026 152027 152028 152029 152030 152031 152032 152033 | } }else{ sCol[0].pLeft = &sCol[1]; sCol[1].iColumn = pIdx->aiColumn[ii]; pExpr = &sCol[0]; } for(jj=0; jj<nn; jj++){ if( sqlite3ExprCompare(0,pTarget->a[jj].pExpr,pExpr,iCursor)<2 ){ break; /* Column ii of the index matches column jj of target */ } } if( jj>=nn ){ /* The target contains no match for column jj of the index */ break; } |
︙ | ︙ | |||
150827 150828 150829 150830 150831 150832 150833 | /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** | | | 152368 152369 152370 152371 152372 152373 152374 152375 152376 152377 152378 152379 152380 152381 152382 | /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimization would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ |
︙ | ︙ | |||
151516 151517 151518 151519 151520 151521 151522 | zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. ** ** The VM register number pParse->regRowid holds the rowid of an | | | 153057 153058 153059 153060 153061 153062 153063 153064 153065 153066 153067 153068 153069 153070 153071 | zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. ** ** The VM register number pParse->regRowid holds the rowid of an ** entry in the sqlite_schema table that was created for this vtab ** by sqlite3StartTable(). */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " " "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " "WHERE rowid=#%d", |
︙ | ︙ | |||
152260 152261 152262 152263 152264 152265 152266 | ** virtual table instance. If it can, create one if one does not already ** exist. Return non-zero if either the eponymous virtual table instance ** exists when this routine returns or if an attempt to create it failed ** and an error message was left in pParse. ** ** An eponymous virtual table instance is one that is named after its ** module, and more importantly, does not require a CREATE VIRTUAL TABLE | | | 153801 153802 153803 153804 153805 153806 153807 153808 153809 153810 153811 153812 153813 153814 153815 | ** virtual table instance. If it can, create one if one does not already ** exist. Return non-zero if either the eponymous virtual table instance ** exists when this routine returns or if an attempt to create it failed ** and an error message was left in pParse. ** ** An eponymous virtual table instance is one that is named after its ** module, and more importantly, does not require a CREATE VIRTUAL TABLE ** statement in order to come into existence. Eponymous virtual table ** instances always exist. They cannot be DROP-ed. ** ** Any virtual table module for which xConnect and xCreate are the same ** method can have an eponymous virtual table instance. */ SQLITE_PRIVATE int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ const sqlite3_module *pModule = pMod->pModule; |
︙ | ︙ | |||
152451 152452 152453 152454 152455 152456 152457 | typedef struct WhereOrCost WhereOrCost; typedef struct WhereOrSet WhereOrSet; typedef struct WhereMemBlock WhereMemBlock; typedef struct WhereRightJoin WhereRightJoin; /* ** This object is a header on a block of allocated memory that will be | | | 153992 153993 153994 153995 153996 153997 153998 153999 154000 154001 154002 154003 154004 154005 154006 | typedef struct WhereOrCost WhereOrCost; typedef struct WhereOrSet WhereOrSet; typedef struct WhereMemBlock WhereMemBlock; typedef struct WhereRightJoin WhereRightJoin; /* ** This object is a header on a block of allocated memory that will be ** automatically freed when its WInfo object is destructed. */ struct WhereMemBlock { WhereMemBlock *pNext; /* Next block in the chain */ u64 sz; /* Bytes of space */ }; /* |
︙ | ︙ | |||
152512 152513 152514 152515 152516 152517 152518 | union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ int iBase; /* Base register of multi-key index record */ | | | 154053 154054 154055 154056 154057 154058 154059 154060 154061 154062 154063 154064 154065 154066 154067 | union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ int iBase; /* Base register of multi-key index record */ int nPrefix; /* Number of prior entries in the key */ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ } *aInLoop; /* Information about each nested IN operator */ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */ Index *pCoveringIdx; /* Possible covering index for WHERE_MULTI_OR */ } u; struct WhereLoop *pWLoop; /* The selected WhereLoop object */ Bitmask notReady; /* FROM entries not usable at this level */ |
︙ | ︙ | |||
152762 152763 152764 152765 152766 152767 152768 | WhereInfo *pWInfo; /* WHERE clause processing context */ WhereClause *pOuter; /* Outer conjunction */ u8 op; /* Split operator. TK_AND or TK_OR */ u8 hasOr; /* True if any a[].eOperator is WO_OR */ int nTerm; /* Number of terms */ int nSlot; /* Number of entries in a[] */ int nBase; /* Number of terms through the last non-Virtual */ | | | 154303 154304 154305 154306 154307 154308 154309 154310 154311 154312 154313 154314 154315 154316 154317 | WhereInfo *pWInfo; /* WHERE clause processing context */ WhereClause *pOuter; /* Outer conjunction */ u8 op; /* Split operator. TK_AND or TK_OR */ u8 hasOr; /* True if any a[].eOperator is WO_OR */ int nTerm; /* Number of terms */ int nSlot; /* Number of entries in a[] */ int nBase; /* Number of terms through the last non-Virtual */ WhereTerm *a; /* Each a[] describes a term of the WHERE clause */ #if defined(SQLITE_SMALL_STACK) WhereTerm aStatic[1]; /* Initial static space for a[] */ #else WhereTerm aStatic[8]; /* Initial static space for a[] */ #endif }; |
︙ | ︙ | |||
153350 153351 153352 153353 153354 153355 153356 153357 153358 153359 153360 153361 153362 153363 | if( viaCoroutine==0 ){ if( (wsFlags & (WHERE_MULTI_OR|WHERE_AUTO_INDEX))==0 ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iTabCur); } if( wsFlags & WHERE_INDEXED ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iIdxCur); } } } } #endif /* | > > > > > > | 154891 154892 154893 154894 154895 154896 154897 154898 154899 154900 154901 154902 154903 154904 154905 154906 154907 154908 154909 154910 | if( viaCoroutine==0 ){ if( (wsFlags & (WHERE_MULTI_OR|WHERE_AUTO_INDEX))==0 ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iTabCur); } if( wsFlags & WHERE_INDEXED ){ sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iIdxCur); } }else{ int addr = pSrclist->a[pLvl->iFrom].addrFillSub; VdbeOp *pOp = sqlite3VdbeGetOp(v, addr-1); assert( sqlite3VdbeDb(v)->mallocFailed || pOp->opcode==OP_InitCoroutine ); assert( sqlite3VdbeDb(v)->mallocFailed || pOp->p2>addr ); sqlite3VdbeScanStatusRange(v, addrExplain, addr, pOp->p2-1); } } } #endif /* |
︙ | ︙ | |||
153847 153848 153849 153850 153851 153852 153853 | nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; | | | 155394 155395 155396 155397 155398 155399 155400 155401 155402 155403 155404 155405 155406 155407 155408 | nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); assert( zAff!=0 || pParse->db->mallocFailed ); if( nSkip ){ int iIdxCur = pLevel->iIdxCur; |
︙ | ︙ | |||
153894 153895 153896 153897 153898 153899 153900 | if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); } } | < < < | 155441 155442 155443 155444 155445 155446 155447 155448 155449 155450 155451 155452 155453 155454 | if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); } } if( pTerm->eOperator & WO_IN ){ if( pTerm->pExpr->flags & EP_xIsSelect ){ /* No affinity ever needs to be (or should be) applied to a value ** from the RHS of an "? IN (SELECT ...)" expression. The ** sqlite3FindInIndex() routine has already ensured that the ** affinity of the comparison has been applied to the value. */ if( zAff ) zAff[j] = SQLITE_AFF_BLOB; |
︙ | ︙ | |||
154039 154040 154041 154042 154043 154044 154045 | ** ** 1) allocate a register and code an OP_Column instruction to read ** the specified column into the new register, and ** ** 2) transform the expression node to a TK_REGISTER node that reads ** from the newly populated register. ** | | | 155583 155584 155585 155586 155587 155588 155589 155590 155591 155592 155593 155594 155595 155596 155597 | ** ** 1) allocate a register and code an OP_Column instruction to read ** the specified column into the new register, and ** ** 2) transform the expression node to a TK_REGISTER node that reads ** from the newly populated register. ** ** Also, if the node is a TK_COLUMN that does access the table identified ** by pCCurHint.iTabCur, and an index is being used (which we will ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into ** an access of the index rather than the original table. */ static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ int rc = WRC_Continue; int reg; |
︙ | ︙ | |||
154657 154658 154659 154660 154661 154662 154663 | /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ | | | 156201 156202 156203 156204 156205 156206 156207 156208 156209 156210 156211 156212 156213 156214 156215 | /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ if( sqlite3ExprIsVector(pX->pRight) ){ |
︙ | ︙ | |||
155837 155838 155839 155840 155841 155842 155843 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was originally part of where.c but was split out to improve | | | 157381 157382 157383 157384 157385 157386 157387 157388 157389 157390 157391 157392 157393 157394 157395 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** This file was originally part of where.c but was split out to improve ** readability and editability. This file contains utility routines for ** analyzing Expr objects in the WHERE clause. */ /* #include "sqliteInt.h" */ /* #include "whereInt.h" */ /* Forward declarations */ static void exprAnalyze(SrcList*, WhereClause*, int); |
︙ | ︙ | |||
156053 156054 156055 156056 156057 156058 156059 | ** with a wildcard and if (2) the non-wildcard prefix does not end with ** an (illegal 0xff) character, or (3) the pattern does not consist of ** a single escape character. The second condition is necessary so ** that we can increment the prefix key to find an upper bound for the ** range search. The third is because the caller assumes that the pattern ** consists of at least one character after all escapes have been ** removed. */ | | | 157597 157598 157599 157600 157601 157602 157603 157604 157605 157606 157607 157608 157609 157610 157611 | ** with a wildcard and if (2) the non-wildcard prefix does not end with ** an (illegal 0xff) character, or (3) the pattern does not consist of ** a single escape character. The second condition is necessary so ** that we can increment the prefix key to find an upper bound for the ** range search. The third is because the caller assumes that the pattern ** consists of at least one character after all escapes have been ** removed. */ if( (cnt>1 || (cnt>0 && z[0]!=wc[3])) && 255!=(u8)z[cnt-1] ){ Expr *pPrefix; /* A "complete" match if the pattern ends with "*" or "%" */ *pisComplete = c==wc[0] && z[cnt+1]==0; /* Get the pattern prefix. Remove all escapes from the prefix. */ pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); |
︙ | ︙ | |||
156626 156627 156628 156629 156630 156631 156632 | assert( j==1 ); continue; } if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded | | | 158170 158171 158172 158173 158174 158175 158176 158177 158178 158179 158180 158181 158182 158183 158184 | assert( j==1 ); continue; } if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded ** or followed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); |
︙ | ︙ | |||
156888 156889 156890 156891 156892 156893 156894 | WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ | | | | 158432 158433 158434 158435 158436 158437 158438 158439 158440 158441 158442 158443 158444 158445 158446 158447 | WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequisites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequisites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ int noCase = 0; /* uppercase equivalent to lowercase */ int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ |
︙ | ︙ | |||
158567 158568 158569 158570 158571 158572 158573 | /* ** Generate code to construct the Index object for an automatic index ** and to set up the WhereLevel object pLevel so that the code generator ** makes use of the automatic index. */ static SQLITE_NOINLINE void constructAutomaticIndex( Parse *pParse, /* The parsing context */ | | < | 160111 160112 160113 160114 160115 160116 160117 160118 160119 160120 160121 160122 160123 160124 160125 | /* ** Generate code to construct the Index object for an automatic index ** and to set up the WhereLevel object pLevel so that the code generator ** makes use of the automatic index. */ static SQLITE_NOINLINE void constructAutomaticIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ const Bitmask notReady, /* Mask of cursors that are not available */ WhereLevel *pLevel /* Write new index here */ ){ int nKeyCol; /* Number of columns in the constructed index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Index *pIdx; /* Object describing the transient index */ |
︙ | ︙ | |||
158593 158594 158595 158596 158597 158598 158599 | char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warning has been issued */ u8 useBloomFilter = 0; /* True to also add a Bloom filter */ Expr *pPartial = 0; /* Partial Index Expression */ int iContinue = 0; /* Jump here to skip excluded rows */ | > | > > | | 160136 160137 160138 160139 160140 160141 160142 160143 160144 160145 160146 160147 160148 160149 160150 160151 160152 160153 160154 160155 160156 160157 160158 160159 160160 160161 160162 160163 160164 160165 160166 160167 160168 160169 160170 160171 160172 160173 160174 160175 160176 160177 160178 160179 | char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warning has been issued */ u8 useBloomFilter = 0; /* True to also add a Bloom filter */ Expr *pPartial = 0; /* Partial Index Expression */ int iContinue = 0; /* Jump here to skip excluded rows */ SrcList *pTabList; /* The complete FROM clause */ SrcItem *pSrc; /* The FROM clause term to get the next index */ int addrCounter = 0; /* Address where integer counter is initialized */ int regBase; /* Array of registers where record is assembled */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrExp = 0; /* Address of OP_Explain */ #endif /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTabList = pWC->pWInfo->pTabList; pSrc = &pTabList->a[pLevel->iFrom]; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; idxCols = 0; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ Expr *pExpr = pTerm->pExpr; /* Make the automatic index a partial index if there are terms in the ** WHERE clause (or the ON clause of a LEFT join) that constrain which ** rows of the target table (pSrc) that can be used. */ if( (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom) ){ pPartial = sqlite3ExprAnd(pParse, pPartial, sqlite3ExprDup(pParse->db, pExpr, 0)); } if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol; Bitmask cMask; |
︙ | ︙ | |||
158749 158750 158751 158752 158753 158754 158755 | if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){ sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel); pLevel->regFilter = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); } /* Fill the automatic index with content */ | | | | | | | | | | 160295 160296 160297 160298 160299 160300 160301 160302 160303 160304 160305 160306 160307 160308 160309 160310 160311 160312 160313 160314 160315 160316 160317 160318 160319 160320 160321 160322 160323 160324 160325 160326 160327 160328 160329 160330 160331 160332 160333 160334 160335 160336 160337 160338 160339 160340 160341 160342 160343 160344 | if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){ sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel); pLevel->regFilter = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); } /* Fill the automatic index with content */ assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] ); if( pSrc->fg.viaCoroutine ){ int regYield = pSrc->regReturn; addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub); addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); VdbeCoverage(v); VdbeComment((v, "next row of %s", pSrc->pTab->zName)); }else{ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); } if( pPartial ){ iContinue = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); pLoop->wsFlags |= WHERE_PARTIALIDX; } regRecord = sqlite3GetTempReg(pParse); regBase = sqlite3GenerateIndexKey( pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 ); if( pLevel->regFilter ){ sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, regBase, pLoop->u.btree.nEq); } sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); if( pSrc->fg.viaCoroutine ){ sqlite3VdbeChangeP2(v, addrCounter, regBase+n); testcase( pParse->db->mallocFailed ); assert( pLevel->iIdxCur>0 ); translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, pSrc->regResult, pLevel->iIdxCur); sqlite3VdbeGoto(v, addrTop); pSrc->fg.viaCoroutine = 0; }else{ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); } sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); |
︙ | ︙ | |||
158847 158848 158849 158850 158851 158852 158853 158854 158855 158856 158857 158858 158859 158860 158861 158862 158863 158864 158865 158866 158867 158868 158869 | assert( pLoop!=0 ); assert( v!=0 ); assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); do{ const SrcItem *pItem; const Table *pTab; u64 sz; sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); addrCont = sqlite3VdbeMakeLabel(pParse); iCur = pLevel->iTabCur; pLevel->regFilter = ++pParse->nMem; /* The Bloom filter is a Blob held in a register. Initialize it ** to zero-filled blob of at least 80K bits, but maybe more if the ** estimated size of the table is larger. We could actually ** measure the size of the table at run-time using OP_Count with ** P3==1 and use that value to initialize the blob. But that makes ** testing complicated. By basing the blob size on the value in the ** sqlite_stat1 table, testing is much easier. */ | > > | > > | | 160393 160394 160395 160396 160397 160398 160399 160400 160401 160402 160403 160404 160405 160406 160407 160408 160409 160410 160411 160412 160413 160414 160415 160416 160417 160418 160419 160420 160421 160422 160423 160424 160425 160426 160427 160428 160429 160430 160431 160432 160433 160434 160435 160436 160437 160438 160439 160440 160441 160442 160443 160444 | assert( pLoop!=0 ); assert( v!=0 ); assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); do{ const SrcList *pTabList; const SrcItem *pItem; const Table *pTab; u64 sz; int iSrc; sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); addrCont = sqlite3VdbeMakeLabel(pParse); iCur = pLevel->iTabCur; pLevel->regFilter = ++pParse->nMem; /* The Bloom filter is a Blob held in a register. Initialize it ** to zero-filled blob of at least 80K bits, but maybe more if the ** estimated size of the table is larger. We could actually ** measure the size of the table at run-time using OP_Count with ** P3==1 and use that value to initialize the blob. But that makes ** testing complicated. By basing the blob size on the value in the ** sqlite_stat1 table, testing is much easier. */ pTabList = pWInfo->pTabList; iSrc = pLevel->iFrom; pItem = &pTabList->a[iSrc]; assert( pItem!=0 ); pTab = pItem->pTab; assert( pTab!=0 ); sz = sqlite3LogEstToInt(pTab->nRowLogEst); if( sz<10000 ){ sz = 10000; }else if( sz>10000000 ){ sz = 10000000; } sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ Expr *pExpr = pTerm->pExpr; if( (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc) ){ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); } } if( pLoop->wsFlags & WHERE_IPK ){ int r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); |
︙ | ︙ | |||
159444 159445 159446 159447 159448 159449 159450 | ** ** CREATE INDEX i1 ON t1(a, b, c); ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; ** ** Value pLoop->nOut is currently set to the estimated number of rows ** visited for scanning (a=? AND b=?). This function reduces that estimate ** by some factor to account for the (c BETWEEN ? AND ?) expression based | | | 160994 160995 160996 160997 160998 160999 161000 161001 161002 161003 161004 161005 161006 161007 161008 | ** ** CREATE INDEX i1 ON t1(a, b, c); ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; ** ** Value pLoop->nOut is currently set to the estimated number of rows ** visited for scanning (a=? AND b=?). This function reduces that estimate ** by some factor to account for the (c BETWEEN ? AND ?) expression based ** on the stat4 data for the index. this scan will be performed multiple ** times (once for each (a,b) combination that matches a=?) is dealt with ** by the caller. ** ** It does this by scanning through all stat4 samples, comparing values ** extracted from pLower and pUpper with the corresponding column in each ** sample. If L and U are the number of samples found to be less than or ** equal to the values extracted from pLower and pUpper respectively, and |
︙ | ︙ | |||
160199 160200 160201 160202 160203 160204 160205 | || p->rSetup==pTemplate->rSetup ); /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); | | | 161749 161750 161751 161752 161753 161754 161755 161756 161757 161758 161759 161760 161761 161762 161763 | || p->rSetup==pTemplate->rSetup ); /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* Any loop using an application-defined index (or PRIMARY KEY or ** UNIQUE constraint) with one or more == constraints is better ** than an automatic index. Unless it is a skip-scan. */ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && (pTemplate->nSkip)==0 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 && (p->prereq & pTemplate->prereq)==pTemplate->prereq |
︙ | ︙ | |||
160226 160227 160228 160229 160230 160231 160232 | && p->nOut<=pTemplate->nOut /* (2c) */ ){ return 0; /* Discard pTemplate */ } /* If pTemplate is always better than p, then cause p to be overwritten ** with pTemplate. pTemplate is better than p if: | | | 161776 161777 161778 161779 161780 161781 161782 161783 161784 161785 161786 161787 161788 161789 161790 | && p->nOut<=pTemplate->nOut /* (2c) */ ){ return 0; /* Discard pTemplate */ } /* If pTemplate is always better than p, then cause p to be overwritten ** with pTemplate. pTemplate is better than p if: ** (1) pTemplate has no more dependencies than p, and ** (2) pTemplate has an equal or lower cost than p. */ if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ && p->rRun>=pTemplate->rRun /* (2a) */ && p->nOut>=pTemplate->nOut /* (2b) */ ){ assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ |
︙ | ︙ | |||
160344 160345 160346 160347 160348 160349 160350 | *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); if( p==0 ) return SQLITE_NOMEM_BKPT; whereLoopInit(p); p->pNextLoop = 0; }else{ /* We will be overwriting WhereLoop p[]. But before we do, first ** go through the rest of the list and delete any other entries besides | | | 161894 161895 161896 161897 161898 161899 161900 161901 161902 161903 161904 161905 161906 161907 161908 | *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); if( p==0 ) return SQLITE_NOMEM_BKPT; whereLoopInit(p); p->pNextLoop = 0; }else{ /* We will be overwriting WhereLoop p[]. But before we do, first ** go through the rest of the list and delete any other entries besides ** p[] that are also supplanted by pTemplate */ WhereLoop **ppTail = &p->pNextLoop; WhereLoop *pToDel; while( *ppTail ){ ppTail = whereLoopFindLesser(ppTail, pTemplate); if( ppTail==0 ) break; pToDel = *ppTail; if( pToDel==0 ) break; |
︙ | ︙ | |||
160544 160545 160546 160547 160548 160549 160550 | if( pColl==0 ) break; if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; } return i; } /* | | | 162094 162095 162096 162097 162098 162099 162100 162101 162102 162103 162104 162105 162106 162107 162108 | if( pColl==0 ) break; if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; } return i; } /* ** Adjust the cost C by the costMult factor T. This only occurs if ** compiled with -DSQLITE_ENABLE_COSTMULT */ #ifdef SQLITE_ENABLE_COSTMULT # define ApplyCostMultiplier(C,T) C += T #else # define ApplyCostMultiplier(C,T) #endif |
︙ | ︙ | |||
160571 160572 160573 160574 160575 160576 160577 | */ static int whereLoopAddBtreeIndex( WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ SrcItem *pSrc, /* FROM clause term being analyzed */ Index *pProbe, /* An index on pSrc */ LogEst nInMul /* log(Number of iterations due to IN) */ ){ | | | 162121 162122 162123 162124 162125 162126 162127 162128 162129 162130 162131 162132 162133 162134 162135 | */ static int whereLoopAddBtreeIndex( WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ SrcItem *pSrc, /* FROM clause term being analyzed */ Index *pProbe, /* An index on pSrc */ LogEst nInMul /* log(Number of iterations due to IN) */ ){ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection malloc context */ WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ |
︙ | ︙ | |||
160881 160882 160883 160884 160885 160886 160887 | /* Set rCostIdx to the cost of visiting selected rows in index. Add ** it to pNew->rRun, which is currently set to the cost of the index ** seek only. Then, if this is a non-covering index, add the cost of ** visiting the rows in the main table. */ assert( pSrc->pTab->szTabRow>0 ); if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ /* The pProbe->szIdxRow is low for an IPK table since the interior | | | 162431 162432 162433 162434 162435 162436 162437 162438 162439 162440 162441 162442 162443 162444 162445 | /* Set rCostIdx to the cost of visiting selected rows in index. Add ** it to pNew->rRun, which is currently set to the cost of the index ** seek only. Then, if this is a non-covering index, add the cost of ** visiting the rows in the main table. */ assert( pSrc->pTab->szTabRow>0 ); if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ /* The pProbe->szIdxRow is low for an IPK table since the interior ** pages are small. Thus szIdxRow gives a good estimate of seek cost. ** But the leaf pages are full-size, so pProbe->szIdxRow would badly ** under-estimate the scanning cost. */ rCostIdx = pNew->nOut + 16; }else{ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; } pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); |
︙ | ︙ | |||
161226 161227 161228 161229 161230 161231 161232 | ** log(nRow) factor is omitted from a non-covering index scan in order to ** bias the scoring in favor of using an index, since the worst-case ** performance of using an index is far better than the worst-case performance ** of a full table scan. */ static int whereLoopAddBtree( WhereLoopBuilder *pBuilder, /* WHERE clause information */ | | | 162776 162777 162778 162779 162780 162781 162782 162783 162784 162785 162786 162787 162788 162789 162790 | ** log(nRow) factor is omitted from a non-covering index scan in order to ** bias the scoring in favor of using an index, since the worst-case ** performance of using an index is far better than the worst-case performance ** of a full table scan. */ static int whereLoopAddBtree( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq /* Extra prerequisites for using this table */ ){ WhereInfo *pWInfo; /* WHERE analysis context */ Index *pProbe; /* An index we are evaluating */ Index sPk; /* A fake index object for the primary key */ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ SrcList *pTabList; /* The FROM clause */ |
︙ | ︙ | |||
161733 161734 161735 161736 161737 161738 161739 | ** ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. ** This routine depends on there being a HiddenIndexInfo structure immediately ** following the sqlite3_index_info structure. ** ** Return a pointer to the collation name: ** | | | 163283 163284 163285 163286 163287 163288 163289 163290 163291 163292 163293 163294 163295 163296 163297 | ** ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. ** This routine depends on there being a HiddenIndexInfo structure immediately ** following the sqlite3_index_info structure. ** ** Return a pointer to the collation name: ** ** 1. If there is an explicit COLLATE operator on the constraint, return it. ** ** 2. Else, if the column has an alternative collation, return that. ** ** 3. Otherwise, return "BINARY". */ SQLITE_API const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; |
︙ | ︙ | |||
162694 162695 162696 162697 162698 162699 162700 | pParse = pWInfo->pParse; nLoop = pWInfo->nLevel; /* TUNING: For simple queries, only the best path is tracked. ** For 2-way joins, the 5 best paths are followed. ** For joins of 3 or more tables, track the 10 best paths */ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); assert( nLoop<=pWInfo->pTabList->nSrc ); | | > | 164244 164245 164246 164247 164248 164249 164250 164251 164252 164253 164254 164255 164256 164257 164258 164259 | pParse = pWInfo->pParse; nLoop = pWInfo->nLevel; /* TUNING: For simple queries, only the best path is tracked. ** For 2-way joins, the 5 best paths are followed. ** For joins of 3 or more tables, track the 10 best paths */ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); assert( nLoop<=pWInfo->pTabList->nSrc ); WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n", nRowEst, pParse->nQueryLoop)); /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this ** case the purpose of this call is to estimate the number of rows returned ** by the overall query. Once this estimate has been obtained, the caller ** will invoke this function a second time, passing the estimate as the ** nRowEst parameter. */ if( pWInfo->pOrderBy==0 || nRowEst==0 ){ |
︙ | ︙ | |||
162797 162798 162799 162800 162801 162802 162803 | if( isOrdered>=0 && isOrdered<nOrderBy ){ if( aSortCost[isOrdered]==0 ){ aSortCost[isOrdered] = whereSortingCost( pWInfo, nRowEst, nOrderBy, isOrdered ); } /* TUNING: Add a small extra penalty (3) to sorting as an | | | > | 164348 164349 164350 164351 164352 164353 164354 164355 164356 164357 164358 164359 164360 164361 164362 164363 164364 164365 164366 164367 164368 164369 164370 164371 164372 164373 164374 164375 164376 164377 164378 164379 164380 164381 | if( isOrdered>=0 && isOrdered<nOrderBy ){ if( aSortCost[isOrdered]==0 ){ aSortCost[isOrdered] = whereSortingCost( pWInfo, nRowEst, nOrderBy, isOrdered ); } /* TUNING: Add a small extra penalty (3) to sorting as an ** extra encouragement to the query planner to select a plan ** where the rows emerge in the correct order without any sorting ** required. */ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 3; WHERETRACE(0x002, ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, rUnsorted, rCost)); }else{ rCost = rUnsorted; rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ } /* TUNING: A full-scan of a VIEW or subquery in the outer loop ** is not so bad. */ if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 && nLoop>1 ){ rCost += -10; nOut += -30; WHERETRACE(0x80,("VIEWSCAN cost reduction for %c\n",pWLoop->cId)); } /* Check to see if pWLoop should be added to the set of ** mxChoice best-so-far paths. ** ** First look for an existing path among best-so-far paths ** that covers the same set of loops and has the same isOrdered |
︙ | ︙ | |||
163219 163220 163221 163222 163223 163224 163225 163226 163227 163228 163229 163230 163231 163232 | ** 1) The query must not be an aggregate. ** 2) The table must be the RHS of a LEFT JOIN. ** 3) Either the query must be DISTINCT, or else the ON or USING clause ** must contain a constraint that limits the scan of the table to ** at most a single row. ** 4) The table must not be referenced by any part of the query apart ** from its own USING or ON clause. ** ** For example, given: ** ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); ** | > > > > > > > | 164771 164772 164773 164774 164775 164776 164777 164778 164779 164780 164781 164782 164783 164784 164785 164786 164787 164788 164789 164790 164791 | ** 1) The query must not be an aggregate. ** 2) The table must be the RHS of a LEFT JOIN. ** 3) Either the query must be DISTINCT, or else the ON or USING clause ** must contain a constraint that limits the scan of the table to ** at most a single row. ** 4) The table must not be referenced by any part of the query apart ** from its own USING or ON clause. ** 5) The table must not have an inner-join ON or USING clause if there is ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause ** might move from the right side to the left side of the RIGHT JOIN. ** Note: Due to (2), this condition can only arise if the table is ** the right-most table of a subquery that was flattened into the ** main query and that subquery was the right-hand operand of an ** inner join that held an ON or USING clause. ** ** For example, given: ** ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); ** |
︙ | ︙ | |||
163244 163245 163246 163247 163248 163249 163250 163251 163252 163253 163254 163255 163256 163257 163258 163259 163260 163261 163262 163263 163264 163265 163266 163267 163268 163269 163270 163271 | */ static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( WhereInfo *pWInfo, Bitmask notReady ){ int i; Bitmask tabUsed; /* Preconditions checked by the caller */ assert( pWInfo->nLevel>=2 ); assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); /* These two preconditions checked by the caller combine to guarantee ** condition (1) of the header comment */ assert( pWInfo->pResultSet!=0 ); assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); if( pWInfo->pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); } for(i=pWInfo->nLevel-1; i>=1; i--){ WhereTerm *pTerm, *pEnd; SrcItem *pItem; WhereLoop *pLoop; pLoop = pWInfo->a[i].pWLoop; pItem = &pWInfo->pTabList->a[pLoop->iTab]; if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; | > > | 164803 164804 164805 164806 164807 164808 164809 164810 164811 164812 164813 164814 164815 164816 164817 164818 164819 164820 164821 164822 164823 164824 164825 164826 164827 164828 164829 164830 164831 164832 | */ static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( WhereInfo *pWInfo, Bitmask notReady ){ int i; Bitmask tabUsed; int hasRightJoin; /* Preconditions checked by the caller */ assert( pWInfo->nLevel>=2 ); assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); /* These two preconditions checked by the caller combine to guarantee ** condition (1) of the header comment */ assert( pWInfo->pResultSet!=0 ); assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); if( pWInfo->pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); } hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0; for(i=pWInfo->nLevel-1; i>=1; i--){ WhereTerm *pTerm, *pEnd; SrcItem *pItem; WhereLoop *pLoop; pLoop = pWInfo->a[i].pWLoop; pItem = &pWInfo->pTabList->a[pLoop->iTab]; if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; |
︙ | ︙ | |||
163280 163281 163282 163283 163284 163285 163286 163287 163288 163289 163290 163291 163292 163293 | if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) || pTerm->pExpr->w.iJoin!=pItem->iCursor ){ break; } } } if( pTerm<pEnd ) continue; WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop->cId)); notReady &= ~pLoop->maskSelf; for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ pTerm->wtFlags |= TERM_CODED; | > > > > > > | 164841 164842 164843 164844 164845 164846 164847 164848 164849 164850 164851 164852 164853 164854 164855 164856 164857 164858 164859 164860 | if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) || pTerm->pExpr->w.iJoin!=pItem->iCursor ){ break; } } if( hasRightJoin && ExprHasProperty(pTerm->pExpr, EP_InnerON) && pTerm->pExpr->w.iJoin==pItem->iCursor ){ break; /* restriction (5) */ } } if( pTerm<pEnd ) continue; WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop->cId)); notReady &= ~pLoop->maskSelf; for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ pTerm->wtFlags |= TERM_CODED; |
︙ | ︙ | |||
163431 163432 163433 163434 163435 163436 163437 163438 163439 163440 163441 163442 163443 163444 | #endif pParse->pIdxEpr = p; if( p->pIENext==0 ){ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pParse); } } } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. | > > > > > > > > > > > > > > > > > > > > > > | 164998 164999 165000 165001 165002 165003 165004 165005 165006 165007 165008 165009 165010 165011 165012 165013 165014 165015 165016 165017 165018 165019 165020 165021 165022 165023 165024 165025 165026 165027 165028 165029 165030 165031 165032 165033 | #endif pParse->pIdxEpr = p; if( p->pIENext==0 ){ sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pParse); } } } /* ** Set the reverse-scan order mask to one for all tables in the query ** with the exception of MATERIALIZED common table expressions that have ** their own internal ORDER BY clauses. ** ** This implements the PRAGMA reverse_unordered_selects=ON setting. ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER). */ static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){ int ii; for(ii=0; ii<pWInfo->pTabList->nSrc; ii++){ SrcItem *pItem = &pWInfo->pTabList->a[ii]; if( !pItem->fg.isCte || pItem->u2.pCteUse->eM10d!=M10d_Yes || NEVER(pItem->pSelect==0) || pItem->pSelect->pOrderBy==0 ){ pWInfo->revMask |= MASKBIT(ii); } } } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. |
︙ | ︙ | |||
163490 163491 163492 163493 163494 163495 163496 | ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** | | | 165079 165080 165081 165082 165083 165084 165085 165086 165087 165088 165089 165090 165091 165092 165093 | ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** ** An outer join of tables t1 and t2 is conceptually coded as follows: ** ** foreach row1 in t1 do ** flag = 0 ** foreach row2 in t2 do ** start: ** ... ** flag = 1 |
︙ | ︙ | |||
163645 163646 163647 163648 163649 163650 163651 | } ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); }else{ /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. ** | | | 165234 165235 165236 165237 165238 165239 165240 165241 165242 165243 165244 165245 165246 165247 165248 | } ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); }else{ /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. ** ** The rule of the previous sentence ensures that if X is the bitmask for ** a table T, then X-1 is the bitmask for all other tables to the left of T. ** Knowing the bitmask for all tables to the left of a left join is ** important. Ticket #3015. ** ** Note that bitmasks are created for all pTabList->nSrc tables in ** pTabList, not just the first nTabList tables. nTabList is normally ** equal to pTabList->nSrc but might be shortened to 1 if the |
︙ | ︙ | |||
163796 163797 163798 163799 163800 163801 163802 163803 | wherePathSolver(pWInfo, 0); if( db->mallocFailed ) goto whereBeginError; if( pWInfo->pOrderBy ){ wherePathSolver(pWInfo, pWInfo->nRowOut+1); if( db->mallocFailed ) goto whereBeginError; } } if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ | > | | 165385 165386 165387 165388 165389 165390 165391 165392 165393 165394 165395 165396 165397 165398 165399 165400 165401 | wherePathSolver(pWInfo, 0); if( db->mallocFailed ) goto whereBeginError; if( pWInfo->pOrderBy ){ wherePathSolver(pWInfo, pWInfo->nRowOut+1); if( db->mallocFailed ) goto whereBeginError; } } assert( pWInfo->pTabList!=0 ); if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ whereReverseScanOrder(pWInfo); } if( pParse->nErr ){ goto whereBeginError; } assert( db->mallocFailed==0 ); #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace ){ |
︙ | ︙ | |||
163897 163898 163899 163900 163901 163902 163903 163904 163905 163906 163907 163908 163909 163910 | int wsFlags = pWInfo->a[0].pWLoop->wsFlags; int bOnerow = (wsFlags & WHERE_ONEROW)!=0; assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); if( bOnerow || ( 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) && !IsVirtual(pTabList->a[0].pTab) && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) )){ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ bFordelete = OPFLAG_FORDELETE; } pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); | > | 165487 165488 165489 165490 165491 165492 165493 165494 165495 165496 165497 165498 165499 165500 165501 | int wsFlags = pWInfo->a[0].pWLoop->wsFlags; int bOnerow = (wsFlags & WHERE_ONEROW)!=0; assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); if( bOnerow || ( 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) && !IsVirtual(pTabList->a[0].pTab) && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) && OptimizationEnabled(db, SQLITE_OnePass) )){ pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ bFordelete = OPFLAG_FORDELETE; } pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); |
︙ | ︙ | |||
164097 164098 164099 164100 164101 164102 164103 164104 164105 164106 | sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); }else{ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); sqlite3VdbeJumpHere(v, iOnce); } } if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | > | < | 165688 165689 165690 165691 165692 165693 165694 165695 165696 165697 165698 165699 165700 165701 165702 165703 165704 165705 165706 | sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); }else{ int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); sqlite3VdbeJumpHere(v, iOnce); } } assert( pTabList == pWInfo->pTabList ); if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ #ifndef SQLITE_OMIT_AUTOMATIC_INDEX constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel); #endif }else{ sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); } if( db->mallocFailed ) goto whereBeginError; } addrExplain = sqlite3WhereExplainOneScan( |
︙ | ︙ | |||
164626 164627 164628 164629 164630 164631 164632 | ** lag(expr [, offset [, default]]) ** first_value(expr) ** last_value(expr) ** nth_value(expr, N) ** ** These are the same built-in window functions supported by Postgres. ** Although the behaviour of aggregate window functions (functions that | | | 166217 166218 166219 166220 166221 166222 166223 166224 166225 166226 166227 166228 166229 166230 166231 | ** lag(expr [, offset [, default]]) ** first_value(expr) ** last_value(expr) ** nth_value(expr, N) ** ** These are the same built-in window functions supported by Postgres. ** Although the behaviour of aggregate window functions (functions that ** can be used as either aggregates or window functions) allows them to ** be implemented using an API, built-in window functions are much more ** esoteric. Additionally, some window functions (e.g. nth_value()) ** may only be implemented by caching the entire partition in memory. ** As such, some built-in window functions use the same API as aggregate ** window functions and some are implemented directly using VDBE ** instructions. Additionally, for those functions that use the API, the ** window frame is sometimes modified before the SELECT statement is |
︙ | ︙ | |||
165156 165157 165158 165159 165160 165161 165162 | ** This function is called immediately after resolving the function name ** for a window function within a SELECT statement. Argument pList is a ** linked list of WINDOW definitions for the current SELECT statement. ** Argument pFunc is the function definition just resolved and pWin ** is the Window object representing the associated OVER clause. This ** function updates the contents of pWin as follows: ** | | | 166747 166748 166749 166750 166751 166752 166753 166754 166755 166756 166757 166758 166759 166760 166761 | ** This function is called immediately after resolving the function name ** for a window function within a SELECT statement. Argument pList is a ** linked list of WINDOW definitions for the current SELECT statement. ** Argument pFunc is the function definition just resolved and pWin ** is the Window object representing the associated OVER clause. This ** function updates the contents of pWin as follows: ** ** * If the OVER clause referred to a named window (as in "max(x) OVER win"), ** search list pList for a matching WINDOW definition, and update pWin ** accordingly. If no such WINDOW clause can be found, leave an error ** in pParse. ** ** * If the function is a built-in window function that requires the ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top ** of this file), pWin is updated here. |
︙ | ︙ | |||
165777 165778 165779 165780 165781 165782 165783 | sqlite3ExprListDelete(pParse->db, pPartition); sqlite3ExprListDelete(pParse->db, pOrderBy); } return pWin; } /* | | | 167368 167369 167370 167371 167372 167373 167374 167375 167376 167377 167378 167379 167380 167381 167382 | sqlite3ExprListDelete(pParse->db, pPartition); sqlite3ExprListDelete(pParse->db, pOrderBy); } return pWin; } /* ** Window *pWin has just been created from a WINDOW clause. Token pBase ** is the base window. Earlier windows from the same WINDOW clause are ** stored in the linked list starting at pWin->pNextWin. This function ** either updates *pWin according to the base specification, or else ** leaves an error in pParse. */ SQLITE_PRIVATE void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ if( pWin->zBase ){ |
︙ | ︙ | |||
166083 166084 166085 166086 166087 166088 166089 | ** callbacks have been invoked in it. ** ** start,current,end ** Consider a window-frame similar to the following: ** ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) ** | | | 167674 167675 167676 167677 167678 167679 167680 167681 167682 167683 167684 167685 167686 167687 167688 | ** callbacks have been invoked in it. ** ** start,current,end ** Consider a window-frame similar to the following: ** ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) ** ** The windows functions implementation caches the input rows in a temp ** table, sorted by "a, b" (it actually populates the cache lazily, and ** aggressively removes rows once they are no longer required, but that's ** a mere detail). It keeps three cursors open on the temp table. One ** (current) that points to the next row to return to the query engine ** once its window function values have been calculated. Another (end) ** points to the next row to call the xStep() method of each window function ** on (so that it is 2 groups ahead of current). And a third (start) that |
︙ | ︙ | |||
167092 167093 167094 167095 167096 167097 167098 | ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** For the most part, the patterns above are adapted to support UNBOUNDED by ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and | | | 168683 168684 168685 168686 168687 168688 168689 168690 168691 168692 168693 168694 168695 168696 168697 | ** } ** while( !eof csrCurrent ){ ** RETURN_ROW ** } ** ** For the most part, the patterns above are adapted to support UNBOUNDED by ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and ** CURRENT ROW by assuming that it is equivalent to "0 PRECEDING/FOLLOWING". ** This is optimized of course - branches that will never be taken and ** conditions that are always true are omitted from the VM code. The only ** exceptional case is: ** ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING ** ** ... loop started by sqlite3WhereBegin() ... |
︙ | ︙ | |||
167371 167372 167373 167374 167375 167376 167377 | break; default: s.eDelete = WINDOW_AGGINVERSE; break; } /* Allocate registers for the array of values from the sub-query, the | | | 168962 168963 168964 168965 168966 168967 168968 168969 168970 168971 168972 168973 168974 168975 168976 | break; default: s.eDelete = WINDOW_AGGINVERSE; break; } /* Allocate registers for the array of values from the sub-query, the ** same values in record form, and the rowid used to insert said record ** into the ephemeral table. */ regNew = pParse->nMem+1; pParse->nMem += nInput; regRecord = ++pParse->nMem; s.regRowid = ++pParse->nMem; /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" |
︙ | ︙ | |||
167612 167613 167614 167615 167616 167617 167618 | } #endif /* SQLITE_OMIT_WINDOWFUNC */ /************** End of window.c **********************************************/ /************** Begin file parse.c *******************************************/ /* This file is automatically generated by Lemon from input grammar | | > | | 169203 169204 169205 169206 169207 169208 169209 169210 169211 169212 169213 169214 169215 169216 169217 169218 169219 169220 169221 169222 169223 169224 169225 169226 169227 169228 169229 169230 169231 169232 169233 169234 169235 | } #endif /* SQLITE_OMIT_WINDOWFUNC */ /************** End of window.c **********************************************/ /************** Begin file parse.c *******************************************/ /* This file is automatically generated by Lemon from input grammar ** source file "parse.y". */ /* ** 2001-09-15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains SQLite's SQL parser. ** ** The canonical source code to this file ("parse.y") is a Lemon grammar ** file that specifies the input grammar and actions to take while parsing. ** That input file is processed by Lemon to generate a C-language ** implementation of a parser for the given grammar. You might be reading ** this comment as part of the translated C-code. Edits should be made ** to the original parse.y sources. */ /* #include "sqliteInt.h" */ /* |
︙ | ︙ | |||
168125 168126 168127 168128 168129 168130 168131 | #define sqlite3ParserCTX_PDECL ,Parse *pParse #define sqlite3ParserCTX_PARAM ,pParse #define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse; #define sqlite3ParserCTX_STORE yypParser->pParse=pParse; #define YYFALLBACK 1 #define YYNSTATE 575 #define YYNRULE 403 | | | 169717 169718 169719 169720 169721 169722 169723 169724 169725 169726 169727 169728 169729 169730 169731 | #define sqlite3ParserCTX_PDECL ,Parse *pParse #define sqlite3ParserCTX_PARAM ,pParse #define sqlite3ParserCTX_FETCH Parse *pParse=yypParser->pParse; #define sqlite3ParserCTX_STORE yypParser->pParse=pParse; #define YYFALLBACK 1 #define YYNSTATE 575 #define YYNRULE 403 #define YYNRULE_WITH_ACTION 338 #define YYNTOKEN 185 #define YY_MAX_SHIFT 574 #define YY_MIN_SHIFTREDUCE 833 #define YY_MAX_SHIFTREDUCE 1235 #define YY_ERROR_ACTION 1236 #define YY_ACCEPT_ACTION 1237 #define YY_NO_ACTION 1238 |
︙ | ︙ | |||
168207 168208 168209 168210 168211 168212 168213 | *********** Begin parsing tables **********************************************/ #define YY_ACTTAB_COUNT (2096) static const YYACTIONTYPE yy_action[] = { /* 0 */ 568, 208, 568, 118, 115, 229, 568, 118, 115, 229, /* 10 */ 568, 1310, 377, 1289, 408, 562, 562, 562, 568, 409, /* 20 */ 378, 1310, 1272, 41, 41, 41, 41, 208, 1520, 71, /* 30 */ 71, 969, 419, 41, 41, 491, 303, 279, 303, 970, | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 169799 169800 169801 169802 169803 169804 169805 169806 169807 169808 169809 169810 169811 169812 169813 169814 169815 169816 169817 169818 169819 169820 169821 169822 169823 169824 169825 169826 169827 169828 169829 169830 169831 169832 169833 169834 169835 169836 169837 169838 169839 169840 169841 169842 169843 169844 169845 169846 169847 169848 169849 169850 169851 169852 169853 169854 169855 169856 169857 169858 169859 169860 169861 169862 169863 169864 169865 169866 169867 169868 169869 169870 169871 169872 169873 169874 169875 169876 169877 169878 169879 169880 169881 169882 169883 169884 169885 169886 169887 169888 169889 169890 169891 169892 169893 169894 169895 169896 169897 169898 169899 169900 169901 169902 169903 169904 169905 169906 169907 169908 169909 169910 169911 169912 169913 169914 169915 169916 169917 169918 169919 169920 169921 169922 169923 169924 169925 169926 169927 169928 169929 169930 169931 169932 169933 169934 169935 169936 169937 169938 169939 169940 169941 169942 169943 169944 169945 169946 169947 169948 169949 169950 169951 169952 169953 169954 169955 169956 169957 169958 169959 169960 169961 169962 169963 169964 169965 169966 169967 169968 169969 169970 169971 169972 169973 169974 169975 169976 169977 169978 169979 169980 169981 169982 169983 169984 169985 169986 169987 169988 169989 169990 169991 169992 169993 169994 169995 169996 169997 169998 169999 170000 170001 170002 170003 170004 170005 170006 170007 170008 170009 170010 170011 170012 170013 170014 170015 170016 170017 170018 | *********** Begin parsing tables **********************************************/ #define YY_ACTTAB_COUNT (2096) static const YYACTIONTYPE yy_action[] = { /* 0 */ 568, 208, 568, 118, 115, 229, 568, 118, 115, 229, /* 10 */ 568, 1310, 377, 1289, 408, 562, 562, 562, 568, 409, /* 20 */ 378, 1310, 1272, 41, 41, 41, 41, 208, 1520, 71, /* 30 */ 71, 969, 419, 41, 41, 491, 303, 279, 303, 970, /* 40 */ 397, 71, 71, 125, 126, 80, 1210, 1210, 1047, 1050, /* 50 */ 1037, 1037, 123, 123, 124, 124, 124, 124, 476, 409, /* 60 */ 1237, 1, 1, 574, 2, 1241, 550, 118, 115, 229, /* 70 */ 317, 480, 146, 480, 524, 118, 115, 229, 529, 1323, /* 80 */ 417, 523, 142, 125, 126, 80, 1210, 1210, 1047, 1050, /* 90 */ 1037, 1037, 123, 123, 124, 124, 124, 124, 118, 115, /* 100 */ 229, 327, 122, 122, 122, 122, 121, 121, 120, 120, /* 110 */ 120, 119, 116, 444, 284, 284, 284, 284, 442, 442, /* 120 */ 442, 1559, 376, 1561, 1186, 375, 1157, 565, 1157, 565, /* 130 */ 409, 1559, 537, 259, 226, 444, 101, 145, 449, 316, /* 140 */ 559, 240, 122, 122, 122, 122, 121, 121, 120, 120, /* 150 */ 120, 119, 116, 444, 125, 126, 80, 1210, 1210, 1047, /* 160 */ 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, 142, /* 170 */ 294, 1186, 339, 448, 120, 120, 120, 119, 116, 444, /* 180 */ 127, 1186, 1187, 1186, 148, 441, 440, 568, 119, 116, /* 190 */ 444, 124, 124, 124, 124, 117, 122, 122, 122, 122, /* 200 */ 121, 121, 120, 120, 120, 119, 116, 444, 454, 113, /* 210 */ 13, 13, 546, 122, 122, 122, 122, 121, 121, 120, /* 220 */ 120, 120, 119, 116, 444, 422, 316, 559, 1186, 1187, /* 230 */ 1186, 149, 1218, 409, 1218, 124, 124, 124, 124, 122, /* 240 */ 122, 122, 122, 121, 121, 120, 120, 120, 119, 116, /* 250 */ 444, 465, 342, 1034, 1034, 1048, 1051, 125, 126, 80, /* 260 */ 1210, 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, /* 270 */ 124, 124, 1275, 522, 222, 1186, 568, 409, 224, 514, /* 280 */ 175, 82, 83, 122, 122, 122, 122, 121, 121, 120, /* 290 */ 120, 120, 119, 116, 444, 1005, 16, 16, 1186, 133, /* 300 */ 133, 125, 126, 80, 1210, 1210, 1047, 1050, 1037, 1037, /* 310 */ 123, 123, 124, 124, 124, 124, 122, 122, 122, 122, /* 320 */ 121, 121, 120, 120, 120, 119, 116, 444, 1038, 546, /* 330 */ 1186, 373, 1186, 1187, 1186, 252, 1429, 399, 504, 501, /* 340 */ 500, 111, 560, 566, 4, 924, 924, 433, 499, 340, /* 350 */ 460, 328, 360, 394, 1231, 1186, 1187, 1186, 563, 568, /* 360 */ 122, 122, 122, 122, 121, 121, 120, 120, 120, 119, /* 370 */ 116, 444, 284, 284, 369, 1572, 1598, 441, 440, 154, /* 380 */ 409, 445, 71, 71, 1282, 565, 1215, 1186, 1187, 1186, /* 390 */ 85, 1217, 271, 557, 543, 515, 515, 568, 98, 1216, /* 400 */ 6, 1274, 472, 142, 125, 126, 80, 1210, 1210, 1047, /* 410 */ 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, 550, /* 420 */ 13, 13, 1024, 507, 1218, 1186, 1218, 549, 109, 109, /* 430 */ 222, 568, 1232, 175, 568, 427, 110, 197, 445, 569, /* 440 */ 445, 430, 1546, 1014, 325, 551, 1186, 270, 287, 368, /* 450 */ 510, 363, 509, 257, 71, 71, 543, 71, 71, 359, /* 460 */ 316, 559, 1604, 122, 122, 122, 122, 121, 121, 120, /* 470 */ 120, 120, 119, 116, 444, 1014, 1014, 1016, 1017, 27, /* 480 */ 284, 284, 1186, 1187, 1186, 1152, 568, 1603, 409, 899, /* 490 */ 190, 550, 356, 565, 550, 935, 533, 517, 1152, 516, /* 500 */ 413, 1152, 552, 1186, 1187, 1186, 568, 544, 544, 51, /* 510 */ 51, 214, 125, 126, 80, 1210, 1210, 1047, 1050, 1037, /* 520 */ 1037, 123, 123, 124, 124, 124, 124, 1186, 474, 135, /* 530 */ 135, 409, 284, 284, 1484, 505, 121, 121, 120, 120, /* 540 */ 120, 119, 116, 444, 1005, 565, 518, 217, 541, 541, /* 550 */ 316, 559, 142, 6, 532, 125, 126, 80, 1210, 1210, /* 560 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 570 */ 1548, 122, 122, 122, 122, 121, 121, 120, 120, 120, /* 580 */ 119, 116, 444, 485, 1186, 1187, 1186, 482, 281, 1263, /* 590 */ 955, 252, 1186, 373, 504, 501, 500, 1186, 340, 570, /* 600 */ 1186, 570, 409, 292, 499, 955, 874, 191, 480, 316, /* 610 */ 559, 384, 290, 380, 122, 122, 122, 122, 121, 121, /* 620 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 630 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 640 */ 124, 409, 394, 1132, 1186, 867, 100, 284, 284, 1186, /* 650 */ 1187, 1186, 373, 1089, 1186, 1187, 1186, 1186, 1187, 1186, /* 660 */ 565, 455, 32, 373, 233, 125, 126, 80, 1210, 1210, /* 670 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 680 */ 1428, 957, 568, 228, 956, 122, 122, 122, 122, 121, /* 690 */ 121, 120, 120, 120, 119, 116, 444, 1152, 228, 1186, /* 700 */ 157, 1186, 1187, 1186, 1547, 13, 13, 301, 955, 1226, /* 710 */ 1152, 153, 409, 1152, 373, 1575, 1170, 5, 369, 1572, /* 720 */ 429, 1232, 3, 955, 122, 122, 122, 122, 121, 121, /* 730 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 740 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 750 */ 124, 409, 208, 567, 1186, 1025, 1186, 1187, 1186, 1186, /* 760 */ 388, 850, 155, 1546, 286, 402, 1094, 1094, 488, 568, /* 770 */ 465, 342, 1315, 1315, 1546, 125, 126, 80, 1210, 1210, /* 780 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 790 */ 129, 568, 13, 13, 374, 122, 122, 122, 122, 121, /* 800 */ 121, 120, 120, 120, 119, 116, 444, 302, 568, 453, /* 810 */ 528, 1186, 1187, 1186, 13, 13, 1186, 1187, 1186, 1293, /* 820 */ 463, 1263, 409, 1313, 1313, 1546, 1010, 453, 452, 200, /* 830 */ 299, 71, 71, 1261, 122, 122, 122, 122, 121, 121, /* 840 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 850 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 860 */ 124, 409, 227, 1069, 1152, 284, 284, 419, 312, 278, /* 870 */ 278, 285, 285, 1415, 406, 405, 382, 1152, 565, 568, /* 880 */ 1152, 1189, 565, 1592, 565, 125, 126, 80, 1210, 1210, /* 890 */ 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, 124, /* 900 */ 453, 1476, 13, 13, 1530, 122, 122, 122, 122, 121, /* 910 */ 121, 120, 120, 120, 119, 116, 444, 201, 568, 354, /* 920 */ 1578, 574, 2, 1241, 838, 839, 840, 1554, 317, 1205, /* 930 */ 146, 6, 409, 255, 254, 253, 206, 1323, 9, 1189, /* 940 */ 262, 71, 71, 424, 122, 122, 122, 122, 121, 121, /* 950 */ 120, 120, 120, 119, 116, 444, 125, 126, 80, 1210, /* 960 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 970 */ 124, 568, 284, 284, 568, 1206, 409, 573, 313, 1241, /* 980 */ 349, 1292, 352, 419, 317, 565, 146, 491, 525, 1635, /* 990 */ 395, 371, 491, 1323, 70, 70, 1291, 71, 71, 240, /* 1000 */ 1321, 104, 80, 1210, 1210, 1047, 1050, 1037, 1037, 123, /* 1010 */ 123, 124, 124, 124, 124, 122, 122, 122, 122, 121, /* 1020 */ 121, 120, 120, 120, 119, 116, 444, 1110, 284, 284, /* 1030 */ 428, 448, 1519, 1206, 439, 284, 284, 1483, 1348, 311, /* 1040 */ 474, 565, 1111, 969, 491, 491, 217, 1259, 565, 1532, /* 1050 */ 568, 970, 207, 568, 1024, 240, 383, 1112, 519, 122, /* 1060 */ 122, 122, 122, 121, 121, 120, 120, 120, 119, 116, /* 1070 */ 444, 1015, 107, 71, 71, 1014, 13, 13, 910, 568, /* 1080 */ 1489, 568, 284, 284, 97, 526, 491, 448, 911, 1322, /* 1090 */ 1318, 545, 409, 284, 284, 565, 151, 209, 1489, 1491, /* 1100 */ 262, 450, 55, 55, 56, 56, 565, 1014, 1014, 1016, /* 1110 */ 443, 332, 409, 527, 12, 295, 125, 126, 80, 1210, /* 1120 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 1130 */ 124, 347, 409, 862, 1528, 1206, 125, 126, 80, 1210, /* 1140 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 1150 */ 124, 1133, 1633, 474, 1633, 371, 125, 114, 80, 1210, /* 1160 */ 1210, 1047, 1050, 1037, 1037, 123, 123, 124, 124, 124, /* 1170 */ 124, 1489, 329, 474, 331, 122, 122, 122, 122, 121, /* 1180 */ 121, 120, 120, 120, 119, 116, 444, 203, 1415, 568, /* 1190 */ 1290, 862, 464, 1206, 436, 122, 122, 122, 122, 121, /* 1200 */ 121, 120, 120, 120, 119, 116, 444, 553, 1133, 1634, /* 1210 */ 539, 1634, 15, 15, 890, 122, 122, 122, 122, 121, /* 1220 */ 121, 120, 120, 120, 119, 116, 444, 568, 298, 538, /* 1230 */ 1131, 1415, 1552, 1553, 1327, 409, 6, 6, 1163, 1264, /* 1240 */ 415, 320, 284, 284, 1415, 508, 565, 525, 300, 457, /* 1250 */ 43, 43, 568, 891, 12, 565, 330, 478, 425, 407, /* 1260 */ 126, 80, 1210, 1210, 1047, 1050, 1037, 1037, 123, 123, /* 1270 */ 124, 124, 124, 124, 568, 57, 57, 288, 1186, 1415, /* 1280 */ 496, 458, 392, 392, 391, 273, 389, 1131, 1551, 847, /* 1290 */ 1163, 407, 6, 568, 321, 1152, 470, 44, 44, 1550, /* 1300 */ 1110, 426, 234, 6, 323, 256, 540, 256, 1152, 431, /* 1310 */ 568, 1152, 322, 17, 487, 1111, 58, 58, 122, 122, /* 1320 */ 122, 122, 121, 121, 120, 120, 120, 119, 116, 444, /* 1330 */ 1112, 216, 481, 59, 59, 1186, 1187, 1186, 111, 560, /* 1340 */ 324, 4, 236, 456, 526, 568, 237, 456, 568, 437, /* 1350 */ 168, 556, 420, 141, 479, 563, 568, 293, 568, 1091, /* 1360 */ 568, 293, 568, 1091, 531, 568, 870, 8, 60, 60, /* 1370 */ 235, 61, 61, 568, 414, 568, 414, 568, 445, 62, /* 1380 */ 62, 45, 45, 46, 46, 47, 47, 199, 49, 49, /* 1390 */ 557, 568, 359, 568, 100, 486, 50, 50, 63, 63, /* 1400 */ 64, 64, 561, 415, 535, 410, 568, 1024, 568, 534, /* 1410 */ 316, 559, 316, 559, 65, 65, 14, 14, 568, 1024, /* 1420 */ 568, 512, 930, 870, 1015, 109, 109, 929, 1014, 66, /* 1430 */ 66, 131, 131, 110, 451, 445, 569, 445, 416, 177, /* 1440 */ 1014, 132, 132, 67, 67, 568, 467, 568, 930, 471, /* 1450 */ 1360, 283, 226, 929, 315, 1359, 407, 568, 459, 407, /* 1460 */ 1014, 1014, 1016, 239, 407, 86, 213, 1346, 52, 52, /* 1470 */ 68, 68, 1014, 1014, 1016, 1017, 27, 1577, 1174, 447, /* 1480 */ 69, 69, 288, 97, 108, 1535, 106, 392, 392, 391, /* 1490 */ 273, 389, 568, 877, 847, 881, 568, 111, 560, 466, /* 1500 */ 4, 568, 152, 30, 38, 568, 1128, 234, 396, 323, /* 1510 */ 111, 560, 527, 4, 563, 53, 53, 322, 568, 163, /* 1520 */ 163, 568, 337, 468, 164, 164, 333, 563, 76, 76, /* 1530 */ 568, 289, 1508, 568, 31, 1507, 568, 445, 338, 483, /* 1540 */ 100, 54, 54, 344, 72, 72, 296, 236, 1076, 557, /* 1550 */ 445, 877, 1356, 134, 134, 168, 73, 73, 141, 161, /* 1560 */ 161, 1566, 557, 535, 568, 319, 568, 348, 536, 1007, /* 1570 */ 473, 261, 261, 889, 888, 235, 535, 568, 1024, 568, /* 1580 */ 475, 534, 261, 367, 109, 109, 521, 136, 136, 130, /* 1590 */ 130, 1024, 110, 366, 445, 569, 445, 109, 109, 1014, /* 1600 */ 162, 162, 156, 156, 568, 110, 1076, 445, 569, 445, /* 1610 */ 410, 351, 1014, 568, 353, 316, 559, 568, 343, 568, /* 1620 */ 100, 497, 357, 258, 100, 896, 897, 140, 140, 355, /* 1630 */ 1306, 1014, 1014, 1016, 1017, 27, 139, 139, 362, 451, /* 1640 */ 137, 137, 138, 138, 1014, 1014, 1016, 1017, 27, 1174, /* 1650 */ 447, 568, 372, 288, 111, 560, 1018, 4, 392, 392, /* 1660 */ 391, 273, 389, 568, 1137, 847, 568, 1072, 568, 258, /* 1670 */ 492, 563, 568, 211, 75, 75, 555, 960, 234, 261, /* 1680 */ 323, 111, 560, 927, 4, 113, 77, 77, 322, 74, /* 1690 */ 74, 42, 42, 1369, 445, 48, 48, 1414, 563, 972, /* 1700 */ 973, 1088, 1087, 1088, 1087, 860, 557, 150, 928, 1342, /* 1710 */ 113, 1354, 554, 1419, 1018, 1271, 1262, 1250, 236, 1249, /* 1720 */ 1251, 445, 1585, 1339, 308, 276, 168, 309, 11, 141, /* 1730 */ 393, 310, 232, 557, 1401, 1024, 335, 291, 1396, 219, /* 1740 */ 336, 109, 109, 934, 297, 1406, 235, 341, 477, 110, /* 1750 */ 502, 445, 569, 445, 1389, 1405, 1014, 400, 1289, 365, /* 1760 */ 223, 1480, 1024, 1479, 1351, 1352, 1350, 1349, 109, 109, /* 1770 */ 204, 1588, 1226, 558, 265, 218, 110, 205, 445, 569, /* 1780 */ 445, 410, 387, 1014, 1527, 179, 316, 559, 1014, 1014, /* 1790 */ 1016, 1017, 27, 230, 1525, 1223, 79, 560, 85, 4, /* 1800 */ 418, 215, 548, 81, 84, 188, 1402, 173, 181, 461, /* 1810 */ 451, 35, 462, 563, 183, 1014, 1014, 1016, 1017, 27, /* 1820 */ 184, 1485, 185, 186, 495, 242, 98, 398, 1408, 36, /* 1830 */ 1407, 484, 91, 469, 401, 1410, 445, 192, 1474, 246, /* 1840 */ 1496, 490, 346, 277, 248, 196, 493, 511, 557, 350, /* 1850 */ 1252, 249, 250, 403, 1309, 1308, 111, 560, 432, 4, /* 1860 */ 1307, 1300, 93, 1602, 881, 1601, 224, 404, 434, 520, /* 1870 */ 263, 435, 1571, 563, 1279, 1278, 364, 1024, 306, 1277, /* 1880 */ 264, 1600, 1557, 109, 109, 370, 1299, 307, 1556, 438, /* 1890 */ 128, 110, 1374, 445, 569, 445, 445, 546, 1014, 10, /* 1900 */ 1461, 105, 381, 1373, 34, 571, 99, 1332, 557, 314, /* 1910 */ 1180, 530, 272, 274, 379, 210, 1331, 547, 385, 386, /* 1920 */ 275, 572, 1247, 1242, 411, 412, 1512, 165, 178, 1513, /* 1930 */ 1014, 1014, 1016, 1017, 27, 1511, 1510, 1024, 78, 147, /* 1940 */ 166, 220, 221, 109, 109, 834, 304, 167, 446, 212, /* 1950 */ 318, 110, 231, 445, 569, 445, 144, 1086, 1014, 1084, /* 1960 */ 326, 180, 169, 1205, 182, 334, 238, 913, 241, 1100, /* 1970 */ 187, 170, 171, 421, 87, 88, 423, 189, 89, 90, /* 1980 */ 172, 1103, 243, 1099, 244, 158, 18, 245, 345, 247, /* 1990 */ 1014, 1014, 1016, 1017, 27, 261, 1092, 193, 1220, 489, /* 2000 */ 194, 37, 366, 849, 494, 251, 195, 506, 92, 19, /* 2010 */ 498, 358, 20, 503, 879, 361, 94, 892, 305, 159, /* 2020 */ 513, 39, 95, 1168, 160, 1053, 964, 1139, 96, 174, /* 2030 */ 1138, 225, 280, 282, 198, 958, 113, 1158, 1154, 260, /* 2040 */ 21, 22, 23, 1156, 1162, 1161, 1143, 24, 33, 25, /* 2050 */ 202, 542, 26, 100, 1067, 102, 1054, 103, 7, 1052, /* 2060 */ 1056, 1109, 1057, 1108, 266, 267, 28, 40, 390, 1019, /* 2070 */ 861, 112, 29, 564, 1176, 1175, 268, 176, 143, 923, /* 2080 */ 1238, 1238, 1238, 1238, 1238, 1238, 1238, 1238, 1238, 1238, /* 2090 */ 1238, 1238, 1238, 1238, 269, 1593, }; static const YYCODETYPE yy_lookahead[] = { /* 0 */ 193, 193, 193, 274, 275, 276, 193, 274, 275, 276, /* 10 */ 193, 223, 219, 225, 206, 210, 211, 212, 193, 19, /* 20 */ 219, 233, 216, 216, 217, 216, 217, 193, 295, 216, /* 30 */ 217, 31, 193, 216, 217, 193, 228, 213, 230, 39, /* 40 */ 206, 216, 217, 43, 44, 45, 46, 47, 48, 49, |
︙ | ︙ | |||
168755 168756 168757 168758 168759 168760 168761 | /* 360 */ 1639, 1641, 1646, 1656, 1655, 1658, 1659, 1661, 1663, 1560, /* 370 */ 1564, 1596, 1605, 1664, 1670, 1565, 1571, 1627, 1638, 1657, /* 380 */ 1665, 1623, 1702, 1630, 1666, 1667, 1671, 1673, 1703, 1718, /* 390 */ 1719, 1729, 1730, 1731, 1621, 1622, 1628, 1720, 1713, 1716, /* 400 */ 1722, 1723, 1733, 1717, 1724, 1727, 1728, 1725, 1740, }; static const YYACTIONTYPE yy_default[] = { | | | | | | | | | | | | | | | | | | | | | | | | | | 170347 170348 170349 170350 170351 170352 170353 170354 170355 170356 170357 170358 170359 170360 170361 170362 170363 170364 170365 170366 170367 170368 170369 170370 170371 170372 170373 170374 170375 170376 170377 170378 170379 170380 170381 170382 170383 170384 170385 170386 170387 170388 170389 170390 170391 170392 170393 170394 170395 170396 170397 170398 170399 170400 170401 170402 170403 170404 170405 170406 170407 170408 170409 170410 170411 170412 170413 170414 170415 170416 170417 | /* 360 */ 1639, 1641, 1646, 1656, 1655, 1658, 1659, 1661, 1663, 1560, /* 370 */ 1564, 1596, 1605, 1664, 1670, 1565, 1571, 1627, 1638, 1657, /* 380 */ 1665, 1623, 1702, 1630, 1666, 1667, 1671, 1673, 1703, 1718, /* 390 */ 1719, 1729, 1730, 1731, 1621, 1622, 1628, 1720, 1713, 1716, /* 400 */ 1722, 1723, 1733, 1717, 1724, 1727, 1728, 1725, 1740, }; static const YYACTIONTYPE yy_default[] = { /* 0 */ 1639, 1639, 1639, 1469, 1236, 1347, 1236, 1236, 1236, 1469, /* 10 */ 1469, 1469, 1236, 1377, 1377, 1522, 1269, 1236, 1236, 1236, /* 20 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1468, 1236, 1236, /* 30 */ 1236, 1236, 1555, 1555, 1236, 1236, 1236, 1236, 1236, 1236, /* 40 */ 1236, 1236, 1386, 1236, 1393, 1236, 1236, 1236, 1236, 1236, /* 50 */ 1470, 1471, 1236, 1236, 1236, 1521, 1523, 1486, 1400, 1399, /* 60 */ 1398, 1397, 1504, 1365, 1391, 1384, 1388, 1465, 1466, 1464, /* 70 */ 1617, 1471, 1470, 1236, 1387, 1433, 1449, 1432, 1236, 1236, /* 80 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 90 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 100 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 110 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 120 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 130 */ 1441, 1448, 1447, 1446, 1455, 1445, 1442, 1435, 1434, 1436, /* 140 */ 1437, 1236, 1236, 1260, 1236, 1236, 1257, 1311, 1236, 1236, /* 150 */ 1236, 1236, 1236, 1541, 1540, 1236, 1438, 1236, 1269, 1427, /* 160 */ 1426, 1452, 1439, 1451, 1450, 1529, 1591, 1590, 1487, 1236, /* 170 */ 1236, 1236, 1236, 1236, 1236, 1555, 1236, 1236, 1236, 1236, /* 180 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 190 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1367, /* 200 */ 1555, 1555, 1236, 1269, 1555, 1555, 1368, 1368, 1265, 1265, /* 210 */ 1371, 1236, 1536, 1338, 1338, 1338, 1338, 1347, 1338, 1236, /* 220 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 230 */ 1236, 1236, 1236, 1236, 1526, 1524, 1236, 1236, 1236, 1236, /* 240 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 250 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 260 */ 1236, 1236, 1236, 1343, 1236, 1236, 1236, 1236, 1236, 1236, /* 270 */ 1236, 1236, 1236, 1236, 1236, 1584, 1236, 1499, 1325, 1343, /* 280 */ 1343, 1343, 1343, 1345, 1326, 1324, 1337, 1270, 1243, 1631, /* 290 */ 1403, 1392, 1344, 1392, 1628, 1390, 1403, 1403, 1390, 1403, /* 300 */ 1344, 1628, 1286, 1606, 1281, 1377, 1377, 1377, 1367, 1367, /* 310 */ 1367, 1367, 1371, 1371, 1467, 1344, 1337, 1236, 1631, 1631, /* 320 */ 1353, 1353, 1630, 1630, 1353, 1487, 1614, 1412, 1314, 1320, /* 330 */ 1320, 1320, 1320, 1353, 1254, 1390, 1614, 1614, 1390, 1412, /* 340 */ 1314, 1390, 1314, 1390, 1353, 1254, 1503, 1625, 1353, 1254, /* 350 */ 1477, 1353, 1254, 1353, 1254, 1477, 1312, 1312, 1312, 1301, /* 360 */ 1236, 1236, 1477, 1312, 1286, 1312, 1301, 1312, 1312, 1573, /* 370 */ 1236, 1481, 1481, 1477, 1353, 1565, 1565, 1380, 1380, 1385, /* 380 */ 1371, 1472, 1353, 1236, 1385, 1383, 1381, 1390, 1304, 1587, /* 390 */ 1587, 1583, 1583, 1583, 1636, 1636, 1536, 1599, 1269, 1269, /* 400 */ 1269, 1269, 1599, 1288, 1288, 1270, 1270, 1269, 1599, 1236, /* 410 */ 1236, 1236, 1236, 1236, 1236, 1594, 1236, 1531, 1488, 1357, /* 420 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 430 */ 1236, 1236, 1236, 1236, 1542, 1236, 1236, 1236, 1236, 1236, /* 440 */ 1236, 1236, 1236, 1236, 1236, 1417, 1236, 1239, 1533, 1236, /* 450 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1394, 1395, 1358, /* 460 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1409, 1236, 1236, /* 470 */ 1236, 1404, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 480 */ 1627, 1236, 1236, 1236, 1236, 1236, 1236, 1502, 1501, 1236, /* 490 */ 1236, 1355, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 500 */ 1236, 1236, 1236, 1236, 1236, 1284, 1236, 1236, 1236, 1236, /* 510 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 520 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1382, /* 530 */ 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 540 */ 1236, 1236, 1236, 1236, 1570, 1372, 1236, 1236, 1236, 1236, /* 550 */ 1618, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, 1236, /* 560 */ 1236, 1236, 1236, 1236, 1236, 1610, 1328, 1418, 1236, 1421, /* 570 */ 1258, 1236, 1248, 1236, 1236, }; /********** End of lemon-generated parsing tables *****************************/ /* The next table maps tokens (terminal symbols) into fallback tokens. ** If a construct like the following: ** |
︙ | ︙ | |||
169740 169741 169742 169743 169744 169745 169746 | /* 302 */ "with ::= WITH RECURSIVE wqlist", /* 303 */ "wqas ::= AS", /* 304 */ "wqas ::= AS MATERIALIZED", /* 305 */ "wqas ::= AS NOT MATERIALIZED", /* 306 */ "wqitem ::= nm eidlist_opt wqas LP select RP", /* 307 */ "wqlist ::= wqitem", /* 308 */ "wqlist ::= wqlist COMMA wqitem", | | < | | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | | 171332 171333 171334 171335 171336 171337 171338 171339 171340 171341 171342 171343 171344 171345 171346 171347 171348 171349 171350 171351 171352 171353 171354 171355 171356 171357 171358 171359 171360 171361 171362 171363 171364 171365 171366 171367 171368 171369 171370 171371 171372 171373 171374 171375 171376 171377 171378 171379 171380 171381 171382 171383 171384 171385 171386 171387 171388 171389 171390 171391 171392 171393 171394 171395 171396 171397 171398 171399 171400 171401 171402 171403 171404 171405 171406 171407 171408 171409 171410 171411 171412 171413 171414 171415 171416 171417 171418 171419 171420 171421 171422 171423 171424 171425 171426 171427 171428 171429 171430 171431 171432 171433 171434 171435 171436 171437 171438 171439 | /* 302 */ "with ::= WITH RECURSIVE wqlist", /* 303 */ "wqas ::= AS", /* 304 */ "wqas ::= AS MATERIALIZED", /* 305 */ "wqas ::= AS NOT MATERIALIZED", /* 306 */ "wqitem ::= nm eidlist_opt wqas LP select RP", /* 307 */ "wqlist ::= wqitem", /* 308 */ "wqlist ::= wqlist COMMA wqitem", /* 309 */ "windowdefn_list ::= windowdefn_list COMMA windowdefn", /* 310 */ "windowdefn ::= nm AS LP window RP", /* 311 */ "window ::= PARTITION BY nexprlist orderby_opt frame_opt", /* 312 */ "window ::= nm PARTITION BY nexprlist orderby_opt frame_opt", /* 313 */ "window ::= ORDER BY sortlist frame_opt", /* 314 */ "window ::= nm ORDER BY sortlist frame_opt", /* 315 */ "window ::= nm frame_opt", /* 316 */ "frame_opt ::=", /* 317 */ "frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt", /* 318 */ "frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt", /* 319 */ "range_or_rows ::= RANGE|ROWS|GROUPS", /* 320 */ "frame_bound_s ::= frame_bound", /* 321 */ "frame_bound_s ::= UNBOUNDED PRECEDING", /* 322 */ "frame_bound_e ::= frame_bound", /* 323 */ "frame_bound_e ::= UNBOUNDED FOLLOWING", /* 324 */ "frame_bound ::= expr PRECEDING|FOLLOWING", /* 325 */ "frame_bound ::= CURRENT ROW", /* 326 */ "frame_exclude_opt ::=", /* 327 */ "frame_exclude_opt ::= EXCLUDE frame_exclude", /* 328 */ "frame_exclude ::= NO OTHERS", /* 329 */ "frame_exclude ::= CURRENT ROW", /* 330 */ "frame_exclude ::= GROUP|TIES", /* 331 */ "window_clause ::= WINDOW windowdefn_list", /* 332 */ "filter_over ::= filter_clause over_clause", /* 333 */ "filter_over ::= over_clause", /* 334 */ "filter_over ::= filter_clause", /* 335 */ "over_clause ::= OVER LP window RP", /* 336 */ "over_clause ::= OVER nm", /* 337 */ "filter_clause ::= FILTER LP WHERE expr RP", /* 338 */ "input ::= cmdlist", /* 339 */ "cmdlist ::= cmdlist ecmd", /* 340 */ "cmdlist ::= ecmd", /* 341 */ "ecmd ::= SEMI", /* 342 */ "ecmd ::= cmdx SEMI", /* 343 */ "ecmd ::= explain cmdx SEMI", /* 344 */ "trans_opt ::=", /* 345 */ "trans_opt ::= TRANSACTION", /* 346 */ "trans_opt ::= TRANSACTION nm", /* 347 */ "savepoint_opt ::= SAVEPOINT", /* 348 */ "savepoint_opt ::=", /* 349 */ "cmd ::= create_table create_table_args", /* 350 */ "table_option_set ::= table_option", /* 351 */ "columnlist ::= columnlist COMMA columnname carglist", /* 352 */ "columnlist ::= columnname carglist", /* 353 */ "nm ::= ID|INDEXED|JOIN_KW", /* 354 */ "nm ::= STRING", /* 355 */ "typetoken ::= typename", /* 356 */ "typename ::= ID|STRING", /* 357 */ "signed ::= plus_num", /* 358 */ "signed ::= minus_num", /* 359 */ "carglist ::= carglist ccons", /* 360 */ "carglist ::=", /* 361 */ "ccons ::= NULL onconf", /* 362 */ "ccons ::= GENERATED ALWAYS AS generated", /* 363 */ "ccons ::= AS generated", /* 364 */ "conslist_opt ::= COMMA conslist", /* 365 */ "conslist ::= conslist tconscomma tcons", /* 366 */ "conslist ::= tcons", /* 367 */ "tconscomma ::=", /* 368 */ "defer_subclause_opt ::= defer_subclause", /* 369 */ "resolvetype ::= raisetype", /* 370 */ "selectnowith ::= oneselect", /* 371 */ "oneselect ::= values", /* 372 */ "sclp ::= selcollist COMMA", /* 373 */ "as ::= ID|STRING", /* 374 */ "indexed_opt ::= indexed_by", /* 375 */ "returning ::=", /* 376 */ "expr ::= term", /* 377 */ "likeop ::= LIKE_KW|MATCH", /* 378 */ "case_operand ::= expr", /* 379 */ "exprlist ::= nexprlist", /* 380 */ "nmnum ::= plus_num", /* 381 */ "nmnum ::= nm", /* 382 */ "nmnum ::= ON", /* 383 */ "nmnum ::= DELETE", /* 384 */ "nmnum ::= DEFAULT", /* 385 */ "plus_num ::= INTEGER|FLOAT", /* 386 */ "foreach_clause ::=", /* 387 */ "foreach_clause ::= FOR EACH ROW", /* 388 */ "trnm ::= nm", /* 389 */ "tridxby ::=", /* 390 */ "database_kw_opt ::= DATABASE", /* 391 */ "database_kw_opt ::=", /* 392 */ "kwcolumn_opt ::=", /* 393 */ "kwcolumn_opt ::= COLUMNKW", /* 394 */ "vtabarglist ::= vtabarg", /* 395 */ "vtabarglist ::= vtabarglist COMMA vtabarg", /* 396 */ "vtabarg ::= vtabarg vtabargtoken", /* 397 */ "anylist ::=", /* 398 */ "anylist ::= anylist LP anylist RP", /* 399 */ "anylist ::= anylist ANY", /* 400 */ "with ::=", /* 401 */ "windowdefn_list ::= windowdefn", /* 402 */ "window ::= frame_opt", }; #endif /* NDEBUG */ #if YYSTACKDEPTH<=0 /* ** Try to increase the size of the parser stack. Return the number |
︙ | ︙ | |||
170649 170650 170651 170652 170653 170654 170655 | 266, /* (302) with ::= WITH RECURSIVE wqlist */ 305, /* (303) wqas ::= AS */ 305, /* (304) wqas ::= AS MATERIALIZED */ 305, /* (305) wqas ::= AS NOT MATERIALIZED */ 304, /* (306) wqitem ::= nm eidlist_opt wqas LP select RP */ 241, /* (307) wqlist ::= wqitem */ 241, /* (308) wqlist ::= wqlist COMMA wqitem */ | | < | | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | 172241 172242 172243 172244 172245 172246 172247 172248 172249 172250 172251 172252 172253 172254 172255 172256 172257 172258 172259 172260 172261 172262 172263 172264 172265 172266 172267 172268 172269 172270 172271 172272 172273 172274 172275 172276 172277 172278 172279 172280 172281 172282 172283 172284 172285 172286 172287 172288 172289 172290 172291 172292 172293 172294 172295 172296 172297 172298 172299 172300 172301 172302 172303 172304 172305 172306 172307 172308 172309 172310 172311 172312 172313 172314 172315 172316 172317 172318 172319 172320 172321 172322 172323 172324 172325 172326 172327 172328 172329 172330 172331 172332 172333 172334 172335 172336 172337 172338 172339 172340 172341 172342 172343 172344 172345 172346 172347 172348 | 266, /* (302) with ::= WITH RECURSIVE wqlist */ 305, /* (303) wqas ::= AS */ 305, /* (304) wqas ::= AS MATERIALIZED */ 305, /* (305) wqas ::= AS NOT MATERIALIZED */ 304, /* (306) wqitem ::= nm eidlist_opt wqas LP select RP */ 241, /* (307) wqlist ::= wqitem */ 241, /* (308) wqlist ::= wqlist COMMA wqitem */ 306, /* (309) windowdefn_list ::= windowdefn_list COMMA windowdefn */ 307, /* (310) windowdefn ::= nm AS LP window RP */ 308, /* (311) window ::= PARTITION BY nexprlist orderby_opt frame_opt */ 308, /* (312) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ 308, /* (313) window ::= ORDER BY sortlist frame_opt */ 308, /* (314) window ::= nm ORDER BY sortlist frame_opt */ 308, /* (315) window ::= nm frame_opt */ 309, /* (316) frame_opt ::= */ 309, /* (317) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ 309, /* (318) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ 313, /* (319) range_or_rows ::= RANGE|ROWS|GROUPS */ 315, /* (320) frame_bound_s ::= frame_bound */ 315, /* (321) frame_bound_s ::= UNBOUNDED PRECEDING */ 316, /* (322) frame_bound_e ::= frame_bound */ 316, /* (323) frame_bound_e ::= UNBOUNDED FOLLOWING */ 314, /* (324) frame_bound ::= expr PRECEDING|FOLLOWING */ 314, /* (325) frame_bound ::= CURRENT ROW */ 317, /* (326) frame_exclude_opt ::= */ 317, /* (327) frame_exclude_opt ::= EXCLUDE frame_exclude */ 318, /* (328) frame_exclude ::= NO OTHERS */ 318, /* (329) frame_exclude ::= CURRENT ROW */ 318, /* (330) frame_exclude ::= GROUP|TIES */ 251, /* (331) window_clause ::= WINDOW windowdefn_list */ 273, /* (332) filter_over ::= filter_clause over_clause */ 273, /* (333) filter_over ::= over_clause */ 273, /* (334) filter_over ::= filter_clause */ 312, /* (335) over_clause ::= OVER LP window RP */ 312, /* (336) over_clause ::= OVER nm */ 311, /* (337) filter_clause ::= FILTER LP WHERE expr RP */ 185, /* (338) input ::= cmdlist */ 186, /* (339) cmdlist ::= cmdlist ecmd */ 186, /* (340) cmdlist ::= ecmd */ 187, /* (341) ecmd ::= SEMI */ 187, /* (342) ecmd ::= cmdx SEMI */ 187, /* (343) ecmd ::= explain cmdx SEMI */ 192, /* (344) trans_opt ::= */ 192, /* (345) trans_opt ::= TRANSACTION */ 192, /* (346) trans_opt ::= TRANSACTION nm */ 194, /* (347) savepoint_opt ::= SAVEPOINT */ 194, /* (348) savepoint_opt ::= */ 190, /* (349) cmd ::= create_table create_table_args */ 203, /* (350) table_option_set ::= table_option */ 201, /* (351) columnlist ::= columnlist COMMA columnname carglist */ 201, /* (352) columnlist ::= columnname carglist */ 193, /* (353) nm ::= ID|INDEXED|JOIN_KW */ 193, /* (354) nm ::= STRING */ 208, /* (355) typetoken ::= typename */ 209, /* (356) typename ::= ID|STRING */ 210, /* (357) signed ::= plus_num */ 210, /* (358) signed ::= minus_num */ 207, /* (359) carglist ::= carglist ccons */ 207, /* (360) carglist ::= */ 215, /* (361) ccons ::= NULL onconf */ 215, /* (362) ccons ::= GENERATED ALWAYS AS generated */ 215, /* (363) ccons ::= AS generated */ 202, /* (364) conslist_opt ::= COMMA conslist */ 228, /* (365) conslist ::= conslist tconscomma tcons */ 228, /* (366) conslist ::= tcons */ 229, /* (367) tconscomma ::= */ 233, /* (368) defer_subclause_opt ::= defer_subclause */ 235, /* (369) resolvetype ::= raisetype */ 239, /* (370) selectnowith ::= oneselect */ 240, /* (371) oneselect ::= values */ 254, /* (372) sclp ::= selcollist COMMA */ 255, /* (373) as ::= ID|STRING */ 264, /* (374) indexed_opt ::= indexed_by */ 272, /* (375) returning ::= */ 217, /* (376) expr ::= term */ 274, /* (377) likeop ::= LIKE_KW|MATCH */ 278, /* (378) case_operand ::= expr */ 261, /* (379) exprlist ::= nexprlist */ 284, /* (380) nmnum ::= plus_num */ 284, /* (381) nmnum ::= nm */ 284, /* (382) nmnum ::= ON */ 284, /* (383) nmnum ::= DELETE */ 284, /* (384) nmnum ::= DEFAULT */ 211, /* (385) plus_num ::= INTEGER|FLOAT */ 289, /* (386) foreach_clause ::= */ 289, /* (387) foreach_clause ::= FOR EACH ROW */ 292, /* (388) trnm ::= nm */ 293, /* (389) tridxby ::= */ 294, /* (390) database_kw_opt ::= DATABASE */ 294, /* (391) database_kw_opt ::= */ 297, /* (392) kwcolumn_opt ::= */ 297, /* (393) kwcolumn_opt ::= COLUMNKW */ 299, /* (394) vtabarglist ::= vtabarg */ 299, /* (395) vtabarglist ::= vtabarglist COMMA vtabarg */ 300, /* (396) vtabarg ::= vtabarg vtabargtoken */ 303, /* (397) anylist ::= */ 303, /* (398) anylist ::= anylist LP anylist RP */ 303, /* (399) anylist ::= anylist ANY */ 266, /* (400) with ::= */ 306, /* (401) windowdefn_list ::= windowdefn */ 308, /* (402) window ::= frame_opt */ }; /* For rule J, yyRuleInfoNRhs[J] contains the negative of the number ** of symbols on the right-hand side of that rule. */ static const signed char yyRuleInfoNRhs[] = { -1, /* (0) explain ::= EXPLAIN */ -3, /* (1) explain ::= EXPLAIN QUERY PLAN */ |
︙ | ︙ | |||
171057 171058 171059 171060 171061 171062 171063 | -3, /* (302) with ::= WITH RECURSIVE wqlist */ -1, /* (303) wqas ::= AS */ -2, /* (304) wqas ::= AS MATERIALIZED */ -3, /* (305) wqas ::= AS NOT MATERIALIZED */ -6, /* (306) wqitem ::= nm eidlist_opt wqas LP select RP */ -1, /* (307) wqlist ::= wqitem */ -3, /* (308) wqlist ::= wqlist COMMA wqitem */ | < | | | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | 172649 172650 172651 172652 172653 172654 172655 172656 172657 172658 172659 172660 172661 172662 172663 172664 172665 172666 172667 172668 172669 172670 172671 172672 172673 172674 172675 172676 172677 172678 172679 172680 172681 172682 172683 172684 172685 172686 172687 172688 172689 172690 172691 172692 172693 172694 172695 172696 172697 172698 172699 172700 172701 172702 172703 172704 172705 172706 172707 172708 172709 172710 172711 172712 172713 172714 172715 172716 172717 172718 172719 172720 172721 172722 172723 172724 172725 172726 172727 172728 172729 172730 172731 172732 172733 172734 172735 172736 172737 172738 172739 172740 172741 172742 172743 172744 172745 172746 172747 172748 172749 172750 172751 172752 172753 172754 172755 172756 | -3, /* (302) with ::= WITH RECURSIVE wqlist */ -1, /* (303) wqas ::= AS */ -2, /* (304) wqas ::= AS MATERIALIZED */ -3, /* (305) wqas ::= AS NOT MATERIALIZED */ -6, /* (306) wqitem ::= nm eidlist_opt wqas LP select RP */ -1, /* (307) wqlist ::= wqitem */ -3, /* (308) wqlist ::= wqlist COMMA wqitem */ -3, /* (309) windowdefn_list ::= windowdefn_list COMMA windowdefn */ -5, /* (310) windowdefn ::= nm AS LP window RP */ -5, /* (311) window ::= PARTITION BY nexprlist orderby_opt frame_opt */ -6, /* (312) window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ -4, /* (313) window ::= ORDER BY sortlist frame_opt */ -5, /* (314) window ::= nm ORDER BY sortlist frame_opt */ -2, /* (315) window ::= nm frame_opt */ 0, /* (316) frame_opt ::= */ -3, /* (317) frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ -6, /* (318) frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ -1, /* (319) range_or_rows ::= RANGE|ROWS|GROUPS */ -1, /* (320) frame_bound_s ::= frame_bound */ -2, /* (321) frame_bound_s ::= UNBOUNDED PRECEDING */ -1, /* (322) frame_bound_e ::= frame_bound */ -2, /* (323) frame_bound_e ::= UNBOUNDED FOLLOWING */ -2, /* (324) frame_bound ::= expr PRECEDING|FOLLOWING */ -2, /* (325) frame_bound ::= CURRENT ROW */ 0, /* (326) frame_exclude_opt ::= */ -2, /* (327) frame_exclude_opt ::= EXCLUDE frame_exclude */ -2, /* (328) frame_exclude ::= NO OTHERS */ -2, /* (329) frame_exclude ::= CURRENT ROW */ -1, /* (330) frame_exclude ::= GROUP|TIES */ -2, /* (331) window_clause ::= WINDOW windowdefn_list */ -2, /* (332) filter_over ::= filter_clause over_clause */ -1, /* (333) filter_over ::= over_clause */ -1, /* (334) filter_over ::= filter_clause */ -4, /* (335) over_clause ::= OVER LP window RP */ -2, /* (336) over_clause ::= OVER nm */ -5, /* (337) filter_clause ::= FILTER LP WHERE expr RP */ -1, /* (338) input ::= cmdlist */ -2, /* (339) cmdlist ::= cmdlist ecmd */ -1, /* (340) cmdlist ::= ecmd */ -1, /* (341) ecmd ::= SEMI */ -2, /* (342) ecmd ::= cmdx SEMI */ -3, /* (343) ecmd ::= explain cmdx SEMI */ 0, /* (344) trans_opt ::= */ -1, /* (345) trans_opt ::= TRANSACTION */ -2, /* (346) trans_opt ::= TRANSACTION nm */ -1, /* (347) savepoint_opt ::= SAVEPOINT */ 0, /* (348) savepoint_opt ::= */ -2, /* (349) cmd ::= create_table create_table_args */ -1, /* (350) table_option_set ::= table_option */ -4, /* (351) columnlist ::= columnlist COMMA columnname carglist */ -2, /* (352) columnlist ::= columnname carglist */ -1, /* (353) nm ::= ID|INDEXED|JOIN_KW */ -1, /* (354) nm ::= STRING */ -1, /* (355) typetoken ::= typename */ -1, /* (356) typename ::= ID|STRING */ -1, /* (357) signed ::= plus_num */ -1, /* (358) signed ::= minus_num */ -2, /* (359) carglist ::= carglist ccons */ 0, /* (360) carglist ::= */ -2, /* (361) ccons ::= NULL onconf */ -4, /* (362) ccons ::= GENERATED ALWAYS AS generated */ -2, /* (363) ccons ::= AS generated */ -2, /* (364) conslist_opt ::= COMMA conslist */ -3, /* (365) conslist ::= conslist tconscomma tcons */ -1, /* (366) conslist ::= tcons */ 0, /* (367) tconscomma ::= */ -1, /* (368) defer_subclause_opt ::= defer_subclause */ -1, /* (369) resolvetype ::= raisetype */ -1, /* (370) selectnowith ::= oneselect */ -1, /* (371) oneselect ::= values */ -2, /* (372) sclp ::= selcollist COMMA */ -1, /* (373) as ::= ID|STRING */ -1, /* (374) indexed_opt ::= indexed_by */ 0, /* (375) returning ::= */ -1, /* (376) expr ::= term */ -1, /* (377) likeop ::= LIKE_KW|MATCH */ -1, /* (378) case_operand ::= expr */ -1, /* (379) exprlist ::= nexprlist */ -1, /* (380) nmnum ::= plus_num */ -1, /* (381) nmnum ::= nm */ -1, /* (382) nmnum ::= ON */ -1, /* (383) nmnum ::= DELETE */ -1, /* (384) nmnum ::= DEFAULT */ -1, /* (385) plus_num ::= INTEGER|FLOAT */ 0, /* (386) foreach_clause ::= */ -3, /* (387) foreach_clause ::= FOR EACH ROW */ -1, /* (388) trnm ::= nm */ 0, /* (389) tridxby ::= */ -1, /* (390) database_kw_opt ::= DATABASE */ 0, /* (391) database_kw_opt ::= */ 0, /* (392) kwcolumn_opt ::= */ -1, /* (393) kwcolumn_opt ::= COLUMNKW */ -1, /* (394) vtabarglist ::= vtabarg */ -3, /* (395) vtabarglist ::= vtabarglist COMMA vtabarg */ -2, /* (396) vtabarg ::= vtabarg vtabargtoken */ 0, /* (397) anylist ::= */ -4, /* (398) anylist ::= anylist LP anylist RP */ -2, /* (399) anylist ::= anylist ANY */ 0, /* (400) with ::= */ -1, /* (401) windowdefn_list ::= windowdefn */ -1, /* (402) window ::= frame_opt */ }; static void yy_accept(yyParser*); /* Forward Declaration */ /* ** Perform a reduce action and the shift that must immediately ** follow the reduce. |
︙ | ︙ | |||
171193 171194 171195 171196 171197 171198 171199 | ** { ... } // User supplied code ** #line <lineno> <thisfile> ** break; */ /********** Begin reduce actions **********************************************/ YYMINORTYPE yylhsminor; case 0: /* explain ::= EXPLAIN */ | | | | | 172785 172786 172787 172788 172789 172790 172791 172792 172793 172794 172795 172796 172797 172798 172799 172800 172801 172802 172803 172804 172805 172806 172807 172808 172809 172810 172811 172812 172813 172814 172815 172816 | ** { ... } // User supplied code ** #line <lineno> <thisfile> ** break; */ /********** Begin reduce actions **********************************************/ YYMINORTYPE yylhsminor; case 0: /* explain ::= EXPLAIN */ { if( pParse->pReprepare==0 ) pParse->explain = 1; } break; case 1: /* explain ::= EXPLAIN QUERY PLAN */ { if( pParse->pReprepare==0 ) pParse->explain = 2; } break; case 2: /* cmdx ::= cmd */ { sqlite3FinishCoding(pParse); } break; case 3: /* cmd ::= BEGIN transtype trans_opt */ {sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy394);} break; case 4: /* transtype ::= */ {yymsp[1].minor.yy394 = TK_DEFERRED;} break; case 5: /* transtype ::= DEFERRED */ case 6: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==6); case 7: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==7); case 319: /* range_or_rows ::= RANGE|ROWS|GROUPS */ yytestcase(yyruleno==319); {yymsp[0].minor.yy394 = yymsp[0].major; /*A-overwrites-X*/} break; case 8: /* cmd ::= COMMIT|END trans_opt */ case 9: /* cmd ::= ROLLBACK trans_opt */ yytestcase(yyruleno==9); {sqlite3EndTransaction(pParse,yymsp[-1].major);} break; case 10: /* cmd ::= SAVEPOINT nm */ |
︙ | ︙ | |||
171506 171507 171508 171509 171510 171511 171512 | break; case 87: /* select ::= selectnowith */ { Select *p = yymsp[0].minor.yy47; if( p ){ parserDoubleLinkSelect(pParse, p); } | < | 173098 173099 173100 173101 173102 173103 173104 173105 173106 173107 173108 173109 173110 173111 | break; case 87: /* select ::= selectnowith */ { Select *p = yymsp[0].minor.yy47; if( p ){ parserDoubleLinkSelect(pParse, p); } } break; case 88: /* selectnowith ::= selectnowith multiselect_op oneselect */ { Select *pRhs = yymsp[0].minor.yy47; Select *pLhs = yymsp[-2].minor.yy47; if( pRhs && pRhs->pPrior ){ |
︙ | ︙ | |||
171598 171599 171600 171601 171602 171603 171604 171605 171606 171607 171608 171609 | if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[0].minor.yy0, 1); sqlite3ExprListSetSpan(pParse,yymsp[-4].minor.yy322,yymsp[-3].minor.yy522,yymsp[-1].minor.yy522); } break; case 101: /* selcollist ::= sclp scanpt STAR */ { Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, p); } break; case 102: /* selcollist ::= sclp scanpt nm DOT STAR */ { | > > | > | | | 173189 173190 173191 173192 173193 173194 173195 173196 173197 173198 173199 173200 173201 173202 173203 173204 173205 173206 173207 173208 173209 173210 173211 173212 173213 | if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yymsp[-4].minor.yy322, &yymsp[0].minor.yy0, 1); sqlite3ExprListSetSpan(pParse,yymsp[-4].minor.yy322,yymsp[-3].minor.yy522,yymsp[-1].minor.yy522); } break; case 101: /* selcollist ::= sclp scanpt STAR */ { Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); sqlite3ExprSetErrorOffset(p, (int)(yymsp[0].minor.yy0.z - pParse->zTail)); yymsp[-2].minor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, p); } break; case 102: /* selcollist ::= sclp scanpt nm DOT STAR */ { Expr *pRight, *pLeft, *pDot; pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); sqlite3ExprSetErrorOffset(pRight, (int)(yymsp[0].minor.yy0.z - pParse->zTail)); pLeft = tokenExpr(pParse, TK_ID, yymsp[-2].minor.yy0); pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); yymsp[-4].minor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, pDot); } break; case 103: /* as ::= AS nm */ case 115: /* dbnm ::= DOT nm */ yytestcase(yyruleno==115); case 254: /* plus_num ::= PLUS INTEGER|FLOAT */ yytestcase(yyruleno==254); case 255: /* minus_num ::= MINUS INTEGER|FLOAT */ yytestcase(yyruleno==255); |
︙ | ︙ | |||
172499 172500 172501 172502 172503 172504 172505 | } break; case 308: /* wqlist ::= wqlist COMMA wqitem */ { yymsp[-2].minor.yy521 = sqlite3WithAdd(pParse, yymsp[-2].minor.yy521, yymsp[0].minor.yy385); } break; | | < < < < | | | | | < < < < < < < | | | | | | | | | | | | | | | | | > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > | 174093 174094 174095 174096 174097 174098 174099 174100 174101 174102 174103 174104 174105 174106 174107 174108 174109 174110 174111 174112 174113 174114 174115 174116 174117 174118 174119 174120 174121 174122 174123 174124 174125 174126 174127 174128 174129 174130 174131 174132 174133 174134 174135 174136 174137 174138 174139 174140 174141 174142 174143 174144 174145 174146 174147 174148 174149 174150 174151 174152 174153 174154 174155 174156 174157 174158 174159 174160 174161 174162 174163 174164 174165 174166 174167 174168 174169 174170 174171 174172 174173 174174 174175 174176 174177 174178 174179 174180 174181 174182 174183 174184 174185 174186 174187 174188 174189 174190 174191 174192 174193 174194 174195 174196 174197 174198 174199 174200 174201 174202 174203 174204 174205 174206 174207 174208 174209 174210 174211 174212 174213 174214 174215 174216 174217 174218 174219 174220 174221 174222 174223 174224 174225 174226 174227 174228 174229 174230 174231 174232 174233 174234 174235 174236 174237 174238 174239 174240 174241 174242 174243 174244 174245 174246 174247 174248 174249 174250 174251 174252 174253 174254 174255 174256 174257 174258 174259 174260 174261 174262 174263 174264 174265 174266 174267 174268 174269 174270 174271 174272 174273 174274 174275 174276 174277 174278 174279 174280 174281 174282 174283 174284 174285 174286 174287 174288 174289 174290 174291 174292 174293 174294 174295 174296 174297 174298 174299 174300 174301 174302 174303 174304 174305 174306 174307 174308 174309 174310 174311 174312 | } break; case 308: /* wqlist ::= wqlist COMMA wqitem */ { yymsp[-2].minor.yy521 = sqlite3WithAdd(pParse, yymsp[-2].minor.yy521, yymsp[0].minor.yy385); } break; case 309: /* windowdefn_list ::= windowdefn_list COMMA windowdefn */ { assert( yymsp[0].minor.yy41!=0 ); sqlite3WindowChain(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy41); yymsp[0].minor.yy41->pNextWin = yymsp[-2].minor.yy41; yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[-2].minor.yy41 = yylhsminor.yy41; break; case 310: /* windowdefn ::= nm AS LP window RP */ { if( ALWAYS(yymsp[-1].minor.yy41) ){ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[-4].minor.yy0.z, yymsp[-4].minor.yy0.n); } yylhsminor.yy41 = yymsp[-1].minor.yy41; } yymsp[-4].minor.yy41 = yylhsminor.yy41; break; case 311: /* window ::= PARTITION BY nexprlist orderby_opt frame_opt */ { yymsp[-4].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, 0); } break; case 312: /* window ::= nm PARTITION BY nexprlist orderby_opt frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, yymsp[-2].minor.yy322, yymsp[-1].minor.yy322, &yymsp[-5].minor.yy0); } yymsp[-5].minor.yy41 = yylhsminor.yy41; break; case 313: /* window ::= ORDER BY sortlist frame_opt */ { yymsp[-3].minor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, 0); } break; case 314: /* window ::= nm ORDER BY sortlist frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0); } yymsp[-4].minor.yy41 = yylhsminor.yy41; break; case 315: /* window ::= nm frame_opt */ { yylhsminor.yy41 = sqlite3WindowAssemble(pParse, yymsp[0].minor.yy41, 0, 0, &yymsp[-1].minor.yy0); } yymsp[-1].minor.yy41 = yylhsminor.yy41; break; case 316: /* frame_opt ::= */ { yymsp[1].minor.yy41 = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); } break; case 317: /* frame_opt ::= range_or_rows frame_bound_s frame_exclude_opt */ { yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-2].minor.yy394, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, TK_CURRENT, 0, yymsp[0].minor.yy516); } yymsp[-2].minor.yy41 = yylhsminor.yy41; break; case 318: /* frame_opt ::= range_or_rows BETWEEN frame_bound_s AND frame_bound_e frame_exclude_opt */ { yylhsminor.yy41 = sqlite3WindowAlloc(pParse, yymsp[-5].minor.yy394, yymsp[-3].minor.yy595.eType, yymsp[-3].minor.yy595.pExpr, yymsp[-1].minor.yy595.eType, yymsp[-1].minor.yy595.pExpr, yymsp[0].minor.yy516); } yymsp[-5].minor.yy41 = yylhsminor.yy41; break; case 320: /* frame_bound_s ::= frame_bound */ case 322: /* frame_bound_e ::= frame_bound */ yytestcase(yyruleno==322); {yylhsminor.yy595 = yymsp[0].minor.yy595;} yymsp[0].minor.yy595 = yylhsminor.yy595; break; case 321: /* frame_bound_s ::= UNBOUNDED PRECEDING */ case 323: /* frame_bound_e ::= UNBOUNDED FOLLOWING */ yytestcase(yyruleno==323); case 325: /* frame_bound ::= CURRENT ROW */ yytestcase(yyruleno==325); {yylhsminor.yy595.eType = yymsp[-1].major; yylhsminor.yy595.pExpr = 0;} yymsp[-1].minor.yy595 = yylhsminor.yy595; break; case 324: /* frame_bound ::= expr PRECEDING|FOLLOWING */ {yylhsminor.yy595.eType = yymsp[0].major; yylhsminor.yy595.pExpr = yymsp[-1].minor.yy528;} yymsp[-1].minor.yy595 = yylhsminor.yy595; break; case 326: /* frame_exclude_opt ::= */ {yymsp[1].minor.yy516 = 0;} break; case 327: /* frame_exclude_opt ::= EXCLUDE frame_exclude */ {yymsp[-1].minor.yy516 = yymsp[0].minor.yy516;} break; case 328: /* frame_exclude ::= NO OTHERS */ case 329: /* frame_exclude ::= CURRENT ROW */ yytestcase(yyruleno==329); {yymsp[-1].minor.yy516 = yymsp[-1].major; /*A-overwrites-X*/} break; case 330: /* frame_exclude ::= GROUP|TIES */ {yymsp[0].minor.yy516 = yymsp[0].major; /*A-overwrites-X*/} break; case 331: /* window_clause ::= WINDOW windowdefn_list */ { yymsp[-1].minor.yy41 = yymsp[0].minor.yy41; } break; case 332: /* filter_over ::= filter_clause over_clause */ { if( yymsp[0].minor.yy41 ){ yymsp[0].minor.yy41->pFilter = yymsp[-1].minor.yy528; }else{ sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy528); } yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[-1].minor.yy41 = yylhsminor.yy41; break; case 333: /* filter_over ::= over_clause */ { yylhsminor.yy41 = yymsp[0].minor.yy41; } yymsp[0].minor.yy41 = yylhsminor.yy41; break; case 334: /* filter_over ::= filter_clause */ { yylhsminor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( yylhsminor.yy41 ){ yylhsminor.yy41->eFrmType = TK_FILTER; yylhsminor.yy41->pFilter = yymsp[0].minor.yy528; }else{ sqlite3ExprDelete(pParse->db, yymsp[0].minor.yy528); } } yymsp[0].minor.yy41 = yylhsminor.yy41; break; case 335: /* over_clause ::= OVER LP window RP */ { yymsp[-3].minor.yy41 = yymsp[-1].minor.yy41; assert( yymsp[-3].minor.yy41!=0 ); } break; case 336: /* over_clause ::= OVER nm */ { yymsp[-1].minor.yy41 = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); if( yymsp[-1].minor.yy41 ){ yymsp[-1].minor.yy41->zName = sqlite3DbStrNDup(pParse->db, yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n); } } break; case 337: /* filter_clause ::= FILTER LP WHERE expr RP */ { yymsp[-4].minor.yy528 = yymsp[-1].minor.yy528; } break; default: /* (338) input ::= cmdlist */ yytestcase(yyruleno==338); /* (339) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==339); /* (340) cmdlist ::= ecmd (OPTIMIZED OUT) */ assert(yyruleno!=340); /* (341) ecmd ::= SEMI */ yytestcase(yyruleno==341); /* (342) ecmd ::= cmdx SEMI */ yytestcase(yyruleno==342); /* (343) ecmd ::= explain cmdx SEMI (NEVER REDUCES) */ assert(yyruleno!=343); /* (344) trans_opt ::= */ yytestcase(yyruleno==344); /* (345) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==345); /* (346) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==346); /* (347) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==347); /* (348) savepoint_opt ::= */ yytestcase(yyruleno==348); /* (349) cmd ::= create_table create_table_args */ yytestcase(yyruleno==349); /* (350) table_option_set ::= table_option (OPTIMIZED OUT) */ assert(yyruleno!=350); /* (351) columnlist ::= columnlist COMMA columnname carglist */ yytestcase(yyruleno==351); /* (352) columnlist ::= columnname carglist */ yytestcase(yyruleno==352); /* (353) nm ::= ID|INDEXED|JOIN_KW */ yytestcase(yyruleno==353); /* (354) nm ::= STRING */ yytestcase(yyruleno==354); /* (355) typetoken ::= typename */ yytestcase(yyruleno==355); /* (356) typename ::= ID|STRING */ yytestcase(yyruleno==356); /* (357) signed ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=357); /* (358) signed ::= minus_num (OPTIMIZED OUT) */ assert(yyruleno!=358); /* (359) carglist ::= carglist ccons */ yytestcase(yyruleno==359); /* (360) carglist ::= */ yytestcase(yyruleno==360); /* (361) ccons ::= NULL onconf */ yytestcase(yyruleno==361); /* (362) ccons ::= GENERATED ALWAYS AS generated */ yytestcase(yyruleno==362); /* (363) ccons ::= AS generated */ yytestcase(yyruleno==363); /* (364) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==364); /* (365) conslist ::= conslist tconscomma tcons */ yytestcase(yyruleno==365); /* (366) conslist ::= tcons (OPTIMIZED OUT) */ assert(yyruleno!=366); /* (367) tconscomma ::= */ yytestcase(yyruleno==367); /* (368) defer_subclause_opt ::= defer_subclause (OPTIMIZED OUT) */ assert(yyruleno!=368); /* (369) resolvetype ::= raisetype (OPTIMIZED OUT) */ assert(yyruleno!=369); /* (370) selectnowith ::= oneselect (OPTIMIZED OUT) */ assert(yyruleno!=370); /* (371) oneselect ::= values */ yytestcase(yyruleno==371); /* (372) sclp ::= selcollist COMMA */ yytestcase(yyruleno==372); /* (373) as ::= ID|STRING */ yytestcase(yyruleno==373); /* (374) indexed_opt ::= indexed_by (OPTIMIZED OUT) */ assert(yyruleno!=374); /* (375) returning ::= */ yytestcase(yyruleno==375); /* (376) expr ::= term (OPTIMIZED OUT) */ assert(yyruleno!=376); /* (377) likeop ::= LIKE_KW|MATCH */ yytestcase(yyruleno==377); /* (378) case_operand ::= expr */ yytestcase(yyruleno==378); /* (379) exprlist ::= nexprlist */ yytestcase(yyruleno==379); /* (380) nmnum ::= plus_num (OPTIMIZED OUT) */ assert(yyruleno!=380); /* (381) nmnum ::= nm (OPTIMIZED OUT) */ assert(yyruleno!=381); /* (382) nmnum ::= ON */ yytestcase(yyruleno==382); /* (383) nmnum ::= DELETE */ yytestcase(yyruleno==383); /* (384) nmnum ::= DEFAULT */ yytestcase(yyruleno==384); /* (385) plus_num ::= INTEGER|FLOAT */ yytestcase(yyruleno==385); /* (386) foreach_clause ::= */ yytestcase(yyruleno==386); /* (387) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==387); /* (388) trnm ::= nm */ yytestcase(yyruleno==388); /* (389) tridxby ::= */ yytestcase(yyruleno==389); /* (390) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==390); /* (391) database_kw_opt ::= */ yytestcase(yyruleno==391); /* (392) kwcolumn_opt ::= */ yytestcase(yyruleno==392); /* (393) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==393); /* (394) vtabarglist ::= vtabarg */ yytestcase(yyruleno==394); /* (395) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==395); /* (396) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==396); /* (397) anylist ::= */ yytestcase(yyruleno==397); /* (398) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==398); /* (399) anylist ::= anylist ANY */ yytestcase(yyruleno==399); /* (400) with ::= */ yytestcase(yyruleno==400); /* (401) windowdefn_list ::= windowdefn (OPTIMIZED OUT) */ assert(yyruleno!=401); /* (402) window ::= frame_opt (OPTIMIZED OUT) */ assert(yyruleno!=402); break; /********** End reduce actions ************************************************/ }; assert( yyruleno<sizeof(yyRuleInfoLhs)/sizeof(yyRuleInfoLhs[0]) ); yygoto = yyRuleInfoLhs[yyruleno]; yysize = yyRuleInfoNRhs[yyruleno]; yyact = yy_find_reduce_action(yymsp[yysize].stateno,(YYCODETYPE)yygoto); |
︙ | ︙ | |||
173496 173497 173498 173499 173500 173501 173502 | */ /* Check to see if z[0..n-1] is a keyword. If it is, write the ** parser symbol code for that keyword into *pType. Always ** return the integer n (the length of the token). */ static int keywordCode(const char *z, int n, int *pType){ int i, j; const char *zKW; | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | 175087 175088 175089 175090 175091 175092 175093 175094 175095 175096 175097 175098 175099 175100 175101 175102 175103 175104 175105 175106 175107 175108 175109 175110 175111 175112 175113 175114 175115 175116 175117 175118 175119 175120 175121 175122 175123 175124 175125 175126 175127 175128 175129 175130 175131 175132 175133 175134 175135 175136 175137 175138 175139 175140 175141 175142 175143 175144 175145 175146 175147 175148 175149 175150 175151 175152 175153 175154 175155 175156 175157 175158 175159 175160 175161 175162 175163 175164 175165 175166 175167 175168 175169 175170 175171 175172 175173 175174 175175 175176 175177 175178 175179 175180 175181 175182 175183 175184 175185 175186 175187 175188 175189 175190 175191 175192 175193 175194 175195 175196 175197 175198 175199 175200 175201 175202 175203 175204 175205 175206 175207 175208 175209 175210 175211 175212 175213 175214 175215 175216 175217 175218 175219 175220 175221 175222 175223 175224 175225 175226 175227 175228 175229 175230 175231 175232 175233 175234 175235 175236 175237 175238 175239 175240 175241 175242 175243 175244 175245 175246 175247 175248 175249 175250 175251 175252 175253 175254 175255 175256 175257 175258 175259 175260 175261 175262 175263 175264 175265 175266 175267 175268 175269 175270 175271 175272 175273 | */ /* Check to see if z[0..n-1] is a keyword. If it is, write the ** parser symbol code for that keyword into *pType. Always ** return the integer n (the length of the token). */ static int keywordCode(const char *z, int n, int *pType){ int i, j; const char *zKW; assert( n>=2 ); i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n*1) % 127; for(i=(int)aKWHash[i]; i>0; i=aKWNext[i]){ if( aKWLen[i]!=n ) continue; zKW = &zKWText[aKWOffset[i]]; #ifdef SQLITE_ASCII if( (z[0]&~0x20)!=zKW[0] ) continue; if( (z[1]&~0x20)!=zKW[1] ) continue; j = 2; while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; } #endif #ifdef SQLITE_EBCDIC if( toupper(z[0])!=zKW[0] ) continue; if( toupper(z[1])!=zKW[1] ) continue; j = 2; while( j<n && toupper(z[j])==zKW[j] ){ j++; } #endif if( j<n ) continue; testcase( i==1 ); /* REINDEX */ testcase( i==2 ); /* INDEXED */ testcase( i==3 ); /* INDEX */ testcase( i==4 ); /* DESC */ testcase( i==5 ); /* ESCAPE */ testcase( i==6 ); /* EACH */ testcase( i==7 ); /* CHECK */ testcase( i==8 ); /* KEY */ testcase( i==9 ); /* BEFORE */ testcase( i==10 ); /* FOREIGN */ testcase( i==11 ); /* FOR */ testcase( i==12 ); /* IGNORE */ testcase( i==13 ); /* REGEXP */ testcase( i==14 ); /* EXPLAIN */ testcase( i==15 ); /* INSTEAD */ testcase( i==16 ); /* ADD */ testcase( i==17 ); /* DATABASE */ testcase( i==18 ); /* AS */ testcase( i==19 ); /* SELECT */ testcase( i==20 ); /* TABLE */ testcase( i==21 ); /* LEFT */ testcase( i==22 ); /* THEN */ testcase( i==23 ); /* END */ testcase( i==24 ); /* DEFERRABLE */ testcase( i==25 ); /* ELSE */ testcase( i==26 ); /* EXCLUDE */ testcase( i==27 ); /* DELETE */ testcase( i==28 ); /* TEMPORARY */ testcase( i==29 ); /* TEMP */ testcase( i==30 ); /* OR */ testcase( i==31 ); /* ISNULL */ testcase( i==32 ); /* NULLS */ testcase( i==33 ); /* SAVEPOINT */ testcase( i==34 ); /* INTERSECT */ testcase( i==35 ); /* TIES */ testcase( i==36 ); /* NOTNULL */ testcase( i==37 ); /* NOT */ testcase( i==38 ); /* NO */ testcase( i==39 ); /* NULL */ testcase( i==40 ); /* LIKE */ testcase( i==41 ); /* EXCEPT */ testcase( i==42 ); /* TRANSACTION */ testcase( i==43 ); /* ACTION */ testcase( i==44 ); /* ON */ testcase( i==45 ); /* NATURAL */ testcase( i==46 ); /* ALTER */ testcase( i==47 ); /* RAISE */ testcase( i==48 ); /* EXCLUSIVE */ testcase( i==49 ); /* EXISTS */ testcase( i==50 ); /* CONSTRAINT */ testcase( i==51 ); /* INTO */ testcase( i==52 ); /* OFFSET */ testcase( i==53 ); /* OF */ testcase( i==54 ); /* SET */ testcase( i==55 ); /* TRIGGER */ testcase( i==56 ); /* RANGE */ testcase( i==57 ); /* GENERATED */ testcase( i==58 ); /* DETACH */ testcase( i==59 ); /* HAVING */ testcase( i==60 ); /* GLOB */ testcase( i==61 ); /* BEGIN */ testcase( i==62 ); /* INNER */ testcase( i==63 ); /* REFERENCES */ testcase( i==64 ); /* UNIQUE */ testcase( i==65 ); /* QUERY */ testcase( i==66 ); /* WITHOUT */ testcase( i==67 ); /* WITH */ testcase( i==68 ); /* OUTER */ testcase( i==69 ); /* RELEASE */ testcase( i==70 ); /* ATTACH */ testcase( i==71 ); /* BETWEEN */ testcase( i==72 ); /* NOTHING */ testcase( i==73 ); /* GROUPS */ testcase( i==74 ); /* GROUP */ testcase( i==75 ); /* CASCADE */ testcase( i==76 ); /* ASC */ testcase( i==77 ); /* DEFAULT */ testcase( i==78 ); /* CASE */ testcase( i==79 ); /* COLLATE */ testcase( i==80 ); /* CREATE */ testcase( i==81 ); /* CURRENT_DATE */ testcase( i==82 ); /* IMMEDIATE */ testcase( i==83 ); /* JOIN */ testcase( i==84 ); /* INSERT */ testcase( i==85 ); /* MATCH */ testcase( i==86 ); /* PLAN */ testcase( i==87 ); /* ANALYZE */ testcase( i==88 ); /* PRAGMA */ testcase( i==89 ); /* MATERIALIZED */ testcase( i==90 ); /* DEFERRED */ testcase( i==91 ); /* DISTINCT */ testcase( i==92 ); /* IS */ testcase( i==93 ); /* UPDATE */ testcase( i==94 ); /* VALUES */ testcase( i==95 ); /* VIRTUAL */ testcase( i==96 ); /* ALWAYS */ testcase( i==97 ); /* WHEN */ testcase( i==98 ); /* WHERE */ testcase( i==99 ); /* RECURSIVE */ testcase( i==100 ); /* ABORT */ testcase( i==101 ); /* AFTER */ testcase( i==102 ); /* RENAME */ testcase( i==103 ); /* AND */ testcase( i==104 ); /* DROP */ testcase( i==105 ); /* PARTITION */ testcase( i==106 ); /* AUTOINCREMENT */ testcase( i==107 ); /* TO */ testcase( i==108 ); /* IN */ testcase( i==109 ); /* CAST */ testcase( i==110 ); /* COLUMN */ testcase( i==111 ); /* COMMIT */ testcase( i==112 ); /* CONFLICT */ testcase( i==113 ); /* CROSS */ testcase( i==114 ); /* CURRENT_TIMESTAMP */ testcase( i==115 ); /* CURRENT_TIME */ testcase( i==116 ); /* CURRENT */ testcase( i==117 ); /* PRECEDING */ testcase( i==118 ); /* FAIL */ testcase( i==119 ); /* LAST */ testcase( i==120 ); /* FILTER */ testcase( i==121 ); /* REPLACE */ testcase( i==122 ); /* FIRST */ testcase( i==123 ); /* FOLLOWING */ testcase( i==124 ); /* FROM */ testcase( i==125 ); /* FULL */ testcase( i==126 ); /* LIMIT */ testcase( i==127 ); /* IF */ testcase( i==128 ); /* ORDER */ testcase( i==129 ); /* RESTRICT */ testcase( i==130 ); /* OTHERS */ testcase( i==131 ); /* OVER */ testcase( i==132 ); /* RETURNING */ testcase( i==133 ); /* RIGHT */ testcase( i==134 ); /* ROLLBACK */ testcase( i==135 ); /* ROWS */ testcase( i==136 ); /* ROW */ testcase( i==137 ); /* UNBOUNDED */ testcase( i==138 ); /* UNION */ testcase( i==139 ); /* USING */ testcase( i==140 ); /* VACUUM */ testcase( i==141 ); /* VIEW */ testcase( i==142 ); /* WINDOW */ testcase( i==143 ); /* DO */ testcase( i==144 ); /* BY */ testcase( i==145 ); /* INITIALLY */ testcase( i==146 ); /* ALL */ testcase( i==147 ); /* PRIMARY */ *pType = aKWCode[i]; break; } return n; } SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){ int id = TK_ID; if( n>=2 ) keywordCode((char*)z, n, &id); return id; } #define SQLITE_N_KEYWORD 147 SQLITE_API int sqlite3_keyword_name(int i,const char **pzName,int *pnName){ if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR; i++; *pzName = zKWText + aKWOffset[i]; |
︙ | ︙ | |||
173974 173975 173976 173977 173978 173979 173980 | ** number that begins with ".". Fall thru into the next case */ /* no break */ deliberate_fall_through } case CC_DIGIT: { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); | | | 175564 175565 175566 175567 175568 175569 175570 175571 175572 175573 175574 175575 175576 175577 175578 | ** number that begins with ".". Fall thru into the next case */ /* no break */ deliberate_fall_through } case CC_DIGIT: { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); testcase( z[0]=='9' ); testcase( z[0]=='.' ); *tokenType = TK_INTEGER; #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){ for(i=3; sqlite3Isxdigit(z[i]); i++){} return i; } #endif |
︙ | ︙ | |||
174046 174047 174048 174049 174050 174051 174052 | break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } case CC_KYWD0: { | > | | 175636 175637 175638 175639 175640 175641 175642 175643 175644 175645 175646 175647 175648 175649 175650 175651 | break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } case CC_KYWD0: { if( aiClass[z[1]]>CC_KYWD ){ i = 1; break; } for(i=2; aiClass[z[i]]<=CC_KYWD; i++){} if( IdChar(z[i]) ){ /* This token started out using characters that can appear in keywords, ** but z[i] is a character not allowed within keywords, so this must ** be an identifier instead */ i++; break; } |
︙ | ︙ | |||
174825 174826 174827 174828 174829 174830 174831 | } /* ** Forward declarations of external module initializer functions ** for modules that need them. */ | < < < < < < < < < < < < | 176416 176417 176418 176419 176420 176421 176422 176423 176424 176425 176426 176427 176428 176429 176430 176431 176432 176433 176434 176435 176436 176437 176438 176439 176440 176441 | } /* ** Forward declarations of external module initializer functions ** for modules that need them. */ #ifdef SQLITE_ENABLE_FTS5 SQLITE_PRIVATE int sqlite3Fts5Init(sqlite3*); #endif #ifdef SQLITE_ENABLE_STMTVTAB SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3*); #endif /* ** An array of pointers to extension initializer functions for ** built-in extensions. */ static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = { #ifdef SQLITE_ENABLE_FTS3 sqlite3Fts3Init, #endif #ifdef SQLITE_ENABLE_FTS5 sqlite3Fts5Init, #endif #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) |
︙ | ︙ | |||
176461 176462 176463 176464 176465 176466 176467 | ** Return non-zero to retry the lock. Return zero to stop trying ** and cause SQLite to return SQLITE_BUSY. */ static int sqliteDefaultBusyCallback( void *ptr, /* Database connection */ int count /* Number of times table has been busy */ ){ | | | | 178040 178041 178042 178043 178044 178045 178046 178047 178048 178049 178050 178051 178052 178053 178054 178055 178056 | ** Return non-zero to retry the lock. Return zero to stop trying ** and cause SQLite to return SQLITE_BUSY. */ static int sqliteDefaultBusyCallback( void *ptr, /* Database connection */ int count /* Number of times table has been busy */ ){ #if SQLITE_OS_WIN || !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP /* This case is for systems that have support for sleeping for fractions of ** a second. Examples: All windows systems, unix systems with nanosleep() */ static const u8 delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; static const u8 totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; # define NDELAY ArraySize(delays) sqlite3 *db = (sqlite3 *)ptr; int tmout = db->busyTimeout; |
︙ | ︙ | |||
178101 178102 178103 178104 178105 178106 178107 | ** undefined on on ** 3 on on ** 2 on off ** 1 off on ** 0 off off ** ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) | | | 179680 179681 179682 179683 179684 179685 179686 179687 179688 179689 179690 179691 179692 179693 179694 | ** undefined on on ** 3 on on ** 2 on off ** 1 off on ** 0 off off ** ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) ** and so that is the default. But developers are encouraged to use ** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible. */ #if !defined(SQLITE_DQS) # define SQLITE_DQS 3 #endif #if (SQLITE_DQS&1)==1 | SQLITE_DqsDML |
︙ | ︙ | |||
178636 178637 178638 178639 178640 178641 178642 | if( !pTab || IsView(pTab) ){ pTab = 0; goto error_out; } /* Find the column for which info is requested */ if( zColumnName==0 ){ | | | 180215 180216 180217 180218 180219 180220 180221 180222 180223 180224 180225 180226 180227 180228 180229 | if( !pTab || IsView(pTab) ){ pTab = 0; goto error_out; } /* Find the column for which info is requested */ if( zColumnName==0 ){ /* Query for existence of table only */ }else{ for(iCol=0; iCol<pTab->nCol; iCol++){ pCol = &pTab->aCol[iCol]; if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){ break; } } |
︙ | ︙ | |||
178956 178957 178958 178959 178960 178961 178962 178963 178964 178965 178966 178967 178968 178969 178970 178971 178972 178973 | sqlite3ShowExpr(0); sqlite3ShowExpr(0); sqlite3ShowExprList(0); sqlite3ShowIdList(0); sqlite3ShowSrcList(0); sqlite3ShowWith(0); sqlite3ShowUpsert(0); sqlite3ShowTriggerStep(0); sqlite3ShowTriggerStepList(0); sqlite3ShowTrigger(0); sqlite3ShowTriggerList(0); #ifndef SQLITE_OMIT_WINDOWFUNC sqlite3ShowWindow(0); sqlite3ShowWinFunc(0); #endif sqlite3ShowSelect(0); } #endif | > > | 180535 180536 180537 180538 180539 180540 180541 180542 180543 180544 180545 180546 180547 180548 180549 180550 180551 180552 180553 180554 | sqlite3ShowExpr(0); sqlite3ShowExpr(0); sqlite3ShowExprList(0); sqlite3ShowIdList(0); sqlite3ShowSrcList(0); sqlite3ShowWith(0); sqlite3ShowUpsert(0); #ifndef SQLITE_OMIT_TRIGGER sqlite3ShowTriggerStep(0); sqlite3ShowTriggerStepList(0); sqlite3ShowTrigger(0); sqlite3ShowTriggerList(0); #endif #ifndef SQLITE_OMIT_WINDOWFUNC sqlite3ShowWindow(0); sqlite3ShowWinFunc(0); #endif sqlite3ShowSelect(0); } #endif |
︙ | ︙ | |||
179076 179077 179078 179079 179080 179081 179082 | /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); ** ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated | | | 180657 180658 180659 180660 180661 180662 180663 180664 180665 180666 180667 180668 180669 180670 180671 | /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); ** ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated ** that demonstrate invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int); |
︙ | ︙ | |||
179230 179231 179232 179233 179234 179235 179236 | /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) ** ** "ptr" is a pointer to a u32. ** ** op==0 Store the current sqlite3TreeTrace in *ptr ** op==1 Set sqlite3TreeTrace to the value *ptr | | | 180811 180812 180813 180814 180815 180816 180817 180818 180819 180820 180821 180822 180823 180824 180825 | /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) ** ** "ptr" is a pointer to a u32. ** ** op==0 Store the current sqlite3TreeTrace in *ptr ** op==1 Set sqlite3TreeTrace to the value *ptr ** op==2 Store the current sqlite3WhereTrace in *ptr ** op==3 Set sqlite3WhereTrace to the value *ptr */ case SQLITE_TESTCTRL_TRACEFLAGS: { int opTrace = va_arg(ap, int); u32 *ptr = va_arg(ap, u32*); switch( opTrace ){ case 0: *ptr = sqlite3TreeTrace; break; |
︙ | ︙ | |||
179265 179266 179267 179268 179269 179270 179271 179272 179273 179274 179275 179276 179277 179278 | u64 *pU64 = va_arg(ap,u64*); int *pI2 = va_arg(ap,int*); *pI1 = rLogEst; *pU64 = sqlite3LogEstToInt(rLogEst); *pI2 = sqlite3LogEst(*pU64); break; } #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) ** ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value ** of the id-th tuning parameter to *piValue. If "id" is between -1 | > > > > > > > > > > > > > > > > > | 180846 180847 180848 180849 180850 180851 180852 180853 180854 180855 180856 180857 180858 180859 180860 180861 180862 180863 180864 180865 180866 180867 180868 180869 180870 180871 180872 180873 180874 180875 180876 | u64 *pU64 = va_arg(ap,u64*); int *pI2 = va_arg(ap,int*); *pI1 = rLogEst; *pU64 = sqlite3LogEstToInt(rLogEst); *pI2 = sqlite3LogEst(*pU64); break; } #if !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_USELONGDOUBLE, int X); ** ** X<0 Make no changes to the bUseLongDouble. Just report value. ** X==0 Disable bUseLongDouble ** X==1 Enable bUseLongDouble ** X==2 Set bUseLongDouble to its default value for this platform */ case SQLITE_TESTCTRL_USELONGDOUBLE: { int b = va_arg(ap, int); if( b==2 ) b = sizeof(LONGDOUBLE_TYPE)>8; if( b>=0 ) sqlite3Config.bUseLongDouble = b>0; rc = sqlite3Config.bUseLongDouble!=0; break; } #endif #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) ** ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value ** of the id-th tuning parameter to *piValue. If "id" is between -1 |
︙ | ︙ | |||
179566 179567 179568 179569 179570 179571 179572 | sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* | | | 181164 181165 181166 181167 181168 181169 181170 181171 181172 181173 181174 181175 181176 181177 181178 | sqlite3_mutex_leave(db->mutex); #endif /* SQLITE_OMIT_WAL */ return rc; } /* ** Open a read-transaction on the snapshot identified by pSnapshot. */ SQLITE_API int sqlite3_snapshot_open( sqlite3 *db, const char *zDb, sqlite3_snapshot *pSnapshot ){ int rc = SQLITE_ERROR; |
︙ | ︙ | |||
195601 195602 195603 195604 195605 195606 195607 195608 195609 195610 195611 195612 195613 195614 | memcpy(pNode->block.a, aRoot, nRoot); pNode->block.n = nRoot; memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING); } for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ NodeReader reader; pNode = &pWriter->aNodeWriter[i]; if( pNode->block.a){ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); blobGrowBuffer(&pNode->key, reader.term.n, &rc); if( rc==SQLITE_OK ){ | > | 197199 197200 197201 197202 197203 197204 197205 197206 197207 197208 197209 197210 197211 197212 197213 | memcpy(pNode->block.a, aRoot, nRoot); pNode->block.n = nRoot; memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING); } for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ NodeReader reader; memset(&reader, 0, sizeof(reader)); pNode = &pWriter->aNodeWriter[i]; if( pNode->block.a){ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); blobGrowBuffer(&pNode->key, reader.term.n, &rc); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
199647 199648 199649 199650 199651 199652 199653 | /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function, resulting in a 7% overall performance ** increase for the parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os). */ static const char jsonIsSpace[] = { | | | | | | | | | > | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | > | | | | < | | | | > > > > > | > > | < | > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > | | | | | 201246 201247 201248 201249 201250 201251 201252 201253 201254 201255 201256 201257 201258 201259 201260 201261 201262 201263 201264 201265 201266 201267 201268 201269 201270 201271 201272 201273 201274 201275 201276 201277 201278 201279 201280 201281 201282 201283 201284 201285 201286 201287 201288 201289 201290 201291 201292 201293 201294 201295 201296 201297 201298 201299 201300 201301 201302 201303 201304 201305 201306 201307 201308 201309 201310 201311 201312 201313 201314 201315 201316 201317 201318 201319 201320 201321 201322 201323 201324 201325 201326 201327 201328 201329 201330 201331 201332 201333 201334 201335 201336 201337 201338 201339 201340 201341 201342 201343 201344 201345 201346 201347 201348 201349 201350 201351 201352 201353 201354 201355 201356 201357 201358 201359 201360 201361 201362 201363 201364 201365 201366 201367 201368 201369 201370 201371 201372 201373 201374 201375 201376 201377 201378 201379 201380 201381 201382 201383 201384 201385 201386 201387 201388 201389 201390 201391 201392 201393 201394 201395 201396 201397 201398 201399 201400 201401 201402 201403 201404 201405 201406 201407 201408 201409 201410 201411 201412 201413 201414 201415 201416 201417 201418 201419 201420 201421 201422 201423 201424 201425 201426 201427 201428 201429 201430 201431 201432 201433 201434 201435 201436 201437 201438 201439 201440 201441 201442 201443 201444 201445 201446 201447 201448 201449 | /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function, resulting in a 7% overall performance ** increase for the parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os). */ static const char jsonIsSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define fast_isspace(x) (jsonIsSpace[(unsigned char)x]) /* ** Characters that are special to JSON. Control charaters, ** '"' and '\\'. */ static const char jsonIsOk[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; #if !defined(SQLITE_DEBUG) && !defined(SQLITE_COVERAGE_TEST) # define VVA(X) #else # define VVA(X) X #endif /* Objects */ typedef struct JsonString JsonString; typedef struct JsonNode JsonNode; typedef struct JsonParse JsonParse; typedef struct JsonCleanup JsonCleanup; /* An instance of this object represents a JSON string ** under construction. Really, this is a generic string accumulator ** that can be and is used to create strings other than JSON. */ struct JsonString { sqlite3_context *pCtx; /* Function context - put error messages here */ char *zBuf; /* Append JSON content here */ u64 nAlloc; /* Bytes of storage available in zBuf[] */ u64 nUsed; /* Bytes of zBuf[] currently used */ u8 bStatic; /* True if zBuf is static space */ u8 bErr; /* True if an error has been encountered */ char zSpace[100]; /* Initial static space */ }; /* A deferred cleanup task. A list of JsonCleanup objects might be ** run when the JsonParse object is destroyed. */ struct JsonCleanup { JsonCleanup *pJCNext; /* Next in a list */ void (*xOp)(void*); /* Routine to run */ void *pArg; /* Argument to xOp() */ }; /* JSON type values */ #define JSON_SUBST 0 /* Special edit node. Uses u.iPrev */ #define JSON_NULL 1 #define JSON_TRUE 2 #define JSON_FALSE 3 #define JSON_INT 4 #define JSON_REAL 5 #define JSON_STRING 6 #define JSON_ARRAY 7 #define JSON_OBJECT 8 /* The "subtype" set for JSON values */ #define JSON_SUBTYPE 74 /* Ascii for "J" */ /* ** Names of the various JSON types: */ static const char * const jsonType[] = { "subst", "null", "true", "false", "integer", "real", "text", "array", "object" }; /* Bit values for the JsonNode.jnFlag field */ #define JNODE_RAW 0x01 /* Content is raw, not JSON encoded */ #define JNODE_ESCAPE 0x02 /* Content is text with \ escapes */ #define JNODE_REMOVE 0x04 /* Do not output */ #define JNODE_REPLACE 0x08 /* Target of a JSON_SUBST node */ #define JNODE_APPEND 0x10 /* More ARRAY/OBJECT entries at u.iAppend */ #define JNODE_LABEL 0x20 /* Is a label of an object */ #define JNODE_JSON5 0x40 /* Node contains JSON5 enhancements */ /* A single node of parsed JSON. An array of these nodes describes ** a parse of JSON + edits. ** ** Use the json_parse() SQL function (available when compiled with ** -DSQLITE_DEBUG) to see a dump of complete JsonParse objects, including ** a complete listing and decoding of the array of JsonNodes. */ struct JsonNode { u8 eType; /* One of the JSON_ type values */ u8 jnFlags; /* JNODE flags */ u8 eU; /* Which union element to use */ u32 n; /* Bytes of content for INT, REAL or STRING ** Number of sub-nodes for ARRAY and OBJECT ** Node that SUBST applies to */ union { const char *zJContent; /* 1: Content for INT, REAL, and STRING */ u32 iAppend; /* 2: More terms for ARRAY and OBJECT */ u32 iKey; /* 3: Key for ARRAY objects in json_tree() */ u32 iPrev; /* 4: Previous SUBST node, or 0 */ } u; }; /* A parsed and possibly edited JSON string. Lifecycle: ** ** 1. JSON comes in and is parsed into an array aNode[]. The original ** JSON text is stored in zJson. ** ** 2. Zero or more changes are made (via json_remove() or json_replace() ** or similar) to the aNode[] array. ** ** 3. A new, edited and mimified JSON string is generated from aNode ** and stored in zAlt. The JsonParse object always owns zAlt. ** ** Step 1 always happens. Step 2 and 3 may or may not happen, depending ** on the operation. ** ** aNode[].u.zJContent entries typically point into zJson. Hence zJson ** must remain valid for the lifespan of the parse. For edits, ** aNode[].u.zJContent might point to malloced space other than zJson. ** Entries in pClup are responsible for freeing that extra malloced space. ** ** When walking the parse tree in aNode[], edits are ignored if useMod is ** false. */ struct JsonParse { u32 nNode; /* Number of slots of aNode[] used */ u32 nAlloc; /* Number of slots of aNode[] allocated */ JsonNode *aNode; /* Array of nodes containing the parse */ char *zJson; /* Original JSON string (before edits) */ char *zAlt; /* Revised and/or mimified JSON */ u32 *aUp; /* Index of parent of each node */ JsonCleanup *pClup;/* Cleanup operations prior to freeing this object */ u16 iDepth; /* Nesting depth */ u8 nErr; /* Number of errors seen */ u8 oom; /* Set to true if out of memory */ u8 bJsonIsRCStr; /* True if zJson is an RCStr */ u8 hasNonstd; /* True if input uses non-standard features like JSON5 */ u8 useMod; /* Actually use the edits contain inside aNode */ u8 hasMod; /* aNode contains edits from the original zJson */ u32 nJPRef; /* Number of references to this object */ int nJson; /* Length of the zJson string in bytes */ int nAlt; /* Length of alternative JSON string zAlt, in bytes */ u32 iErr; /* Error location in zJson[] */ u32 iSubst; /* Last JSON_SUBST entry in aNode[] */ u32 iHold; /* Age of this entry in the cache for LRU replacement */ }; /* ** Maximum nesting depth of JSON for this implementation. ** ** This limit is needed to avoid a stack overflow in the recursive ** descent parser. A depth of 1000 is far deeper than any sane JSON ** should go. Historical note: This limit was 2000 prior to version 3.42.0 */ #define JSON_MAX_DEPTH 1000 /************************************************************************** ** Utility routines for dealing with JsonString objects **************************************************************************/ /* Set the JsonString object to an empty string */ |
︙ | ︙ | |||
199787 199788 199789 199790 199791 199792 199793 | */ static void jsonInit(JsonString *p, sqlite3_context *pCtx){ p->pCtx = pCtx; p->bErr = 0; jsonZero(p); } | < | < | | | > | < > > > > > > > > > > | > > | | | > > > > > > > > > > > > > > > | > > | | > > > > > > > > > > > > > > > > > > > > | > > | > | > > > | | < | | | | | | | 201458 201459 201460 201461 201462 201463 201464 201465 201466 201467 201468 201469 201470 201471 201472 201473 201474 201475 201476 201477 201478 201479 201480 201481 201482 201483 201484 201485 201486 201487 201488 201489 201490 201491 201492 201493 201494 201495 201496 201497 201498 201499 201500 201501 201502 201503 201504 201505 201506 201507 201508 201509 201510 201511 201512 201513 201514 201515 201516 201517 201518 201519 201520 201521 201522 201523 201524 201525 201526 201527 201528 201529 201530 201531 201532 201533 201534 201535 201536 201537 201538 201539 201540 201541 201542 201543 201544 201545 201546 201547 201548 201549 201550 201551 201552 201553 201554 201555 201556 201557 201558 201559 201560 201561 201562 201563 201564 201565 201566 201567 201568 201569 201570 201571 201572 201573 201574 201575 201576 201577 201578 201579 201580 201581 201582 201583 201584 201585 201586 201587 201588 201589 201590 201591 201592 201593 201594 201595 201596 201597 201598 201599 201600 201601 201602 201603 201604 201605 201606 201607 201608 201609 201610 201611 201612 201613 201614 201615 201616 201617 201618 201619 201620 201621 201622 201623 201624 201625 201626 201627 201628 201629 201630 201631 201632 201633 201634 201635 201636 201637 201638 201639 201640 201641 201642 201643 201644 201645 201646 201647 201648 201649 201650 201651 201652 201653 201654 201655 201656 201657 201658 201659 201660 201661 201662 201663 201664 201665 201666 201667 201668 201669 201670 201671 201672 201673 201674 201675 201676 201677 201678 201679 201680 201681 201682 201683 201684 201685 201686 201687 201688 201689 201690 201691 201692 201693 201694 201695 201696 201697 201698 201699 201700 201701 201702 | */ static void jsonInit(JsonString *p, sqlite3_context *pCtx){ p->pCtx = pCtx; p->bErr = 0; jsonZero(p); } /* Free all allocated memory and reset the JsonString object back to its ** initial state. */ static void jsonReset(JsonString *p){ if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf); jsonZero(p); } /* Report an out-of-memory (OOM) condition */ static void jsonOom(JsonString *p){ p->bErr = 1; sqlite3_result_error_nomem(p->pCtx); jsonReset(p); } /* Enlarge pJson->zBuf so that it can hold at least N more bytes. ** Return zero on success. Return non-zero on an OOM error */ static int jsonGrow(JsonString *p, u32 N){ u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10; char *zNew; if( p->bStatic ){ if( p->bErr ) return 1; zNew = sqlite3RCStrNew(nTotal); if( zNew==0 ){ jsonOom(p); return SQLITE_NOMEM; } memcpy(zNew, p->zBuf, (size_t)p->nUsed); p->zBuf = zNew; p->bStatic = 0; }else{ p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal); if( p->zBuf==0 ){ p->bErr = 1; jsonZero(p); return SQLITE_NOMEM; } } p->nAlloc = nTotal; return SQLITE_OK; } /* Append N bytes from zIn onto the end of the JsonString string. */ static SQLITE_NOINLINE void jsonAppendExpand( JsonString *p, const char *zIn, u32 N ){ assert( N>0 ); if( jsonGrow(p,N) ) return; memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){ if( N==0 ) return; if( N+p->nUsed >= p->nAlloc ){ jsonAppendExpand(p,zIn,N); }else{ memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } } static void jsonAppendRawNZ(JsonString *p, const char *zIn, u32 N){ assert( N>0 ); if( N+p->nUsed >= p->nAlloc ){ jsonAppendExpand(p,zIn,N); }else{ memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } } /* Append formatted text (not to exceed N bytes) to the JsonString. */ static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){ va_list ap; if( (p->nUsed + N >= p->nAlloc) && jsonGrow(p, N) ) return; va_start(ap, zFormat); sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap); va_end(ap); p->nUsed += (int)strlen(p->zBuf+p->nUsed); } /* Append a single character */ static SQLITE_NOINLINE void jsonAppendCharExpand(JsonString *p, char c){ if( jsonGrow(p,1) ) return; p->zBuf[p->nUsed++] = c; } static void jsonAppendChar(JsonString *p, char c){ if( p->nUsed>=p->nAlloc ){ jsonAppendCharExpand(p,c); }else{ p->zBuf[p->nUsed++] = c; } } /* Try to force the string to be a zero-terminated RCStr string. ** ** Return true on success. Return false if an OOM prevents this ** from happening. */ static int jsonForceRCStr(JsonString *p){ jsonAppendChar(p, 0); if( p->bErr ) return 0; p->nUsed--; if( p->bStatic==0 ) return 1; p->nAlloc = 0; p->nUsed++; jsonGrow(p, p->nUsed); p->nUsed--; return p->bStatic==0; } /* Append a comma separator to the output buffer, if the previous ** character is not '[' or '{'. */ static void jsonAppendSeparator(JsonString *p){ char c; if( p->nUsed==0 ) return; c = p->zBuf[p->nUsed-1]; if( c=='[' || c=='{' ) return; jsonAppendChar(p, ','); } /* Append the N-byte string in zIn to the end of the JsonString string ** under construction. Enclose the string in "..." and escape ** any double-quotes or backslash characters contained within the ** string. */ static void jsonAppendString(JsonString *p, const char *zIn, u32 N){ u32 i; if( zIn==0 || ((N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0) ) return; p->zBuf[p->nUsed++] = '"'; for(i=0; i<N; i++){ unsigned char c = ((unsigned const char*)zIn)[i]; if( jsonIsOk[c] ){ p->zBuf[p->nUsed++] = c; }else if( c=='"' || c=='\\' ){ json_simple_escape: if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = c; }else if( c=='\'' ){ p->zBuf[p->nUsed++] = c; }else{ static const char aSpecial[] = { 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; assert( sizeof(aSpecial)==32 ); assert( aSpecial['\b']=='b' ); assert( aSpecial['\f']=='f' ); assert( aSpecial['\n']=='n' ); assert( aSpecial['\r']=='r' ); assert( aSpecial['\t']=='t' ); assert( c>=0 && c<sizeof(aSpecial) ); if( aSpecial[c] ){ c = aSpecial[c]; goto json_simple_escape; } if( (p->nUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = 'u'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = "0123456789abcdef"[c>>4]; p->zBuf[p->nUsed++] = "0123456789abcdef"[c&0xf]; } } p->zBuf[p->nUsed++] = '"'; assert( p->nUsed<p->nAlloc ); } /* ** The zIn[0..N] string is a JSON5 string literal. Append to p a translation ** of the string literal that standard JSON and that omits all JSON5 ** features. */ static void jsonAppendNormalizedString(JsonString *p, const char *zIn, u32 N){ u32 i; jsonAppendChar(p, '"'); zIn++; N -= 2; while( N>0 ){ for(i=0; i<N && zIn[i]!='\\'; i++){} if( i>0 ){ jsonAppendRawNZ(p, zIn, i); zIn += i; N -= i; if( N==0 ) break; } assert( zIn[0]=='\\' ); switch( (u8)zIn[1] ){ case '\'': jsonAppendChar(p, '\''); break; case 'v': jsonAppendRawNZ(p, "\\u0009", 6); break; case 'x': jsonAppendRawNZ(p, "\\u00", 4); jsonAppendRawNZ(p, &zIn[2], 2); zIn += 2; N -= 2; break; case '0': jsonAppendRawNZ(p, "\\u0000", 6); break; case '\r': if( zIn[2]=='\n' ){ zIn++; N--; } break; case '\n': break; case 0xe2: assert( N>=4 ); assert( 0x80==(u8)zIn[2] ); assert( 0xa8==(u8)zIn[3] || 0xa9==(u8)zIn[3] ); zIn += 2; N -= 2; break; default: jsonAppendRawNZ(p, zIn, 2); break; } zIn += 2; N -= 2; } jsonAppendChar(p, '"'); } |
︙ | ︙ | |||
199995 199996 199997 199998 199999 200000 200001 | if( zIn[0]=='0' && (zIn[1]=='x' || zIn[1]=='X') ){ sqlite3_int64 i = 0; int rc = sqlite3DecOrHexToI64(zIn, &i); if( rc<=1 ){ jsonPrintf(100,p,"%lld",i); }else{ assert( rc==2 ); | | > | | 201718 201719 201720 201721 201722 201723 201724 201725 201726 201727 201728 201729 201730 201731 201732 201733 201734 201735 201736 201737 | if( zIn[0]=='0' && (zIn[1]=='x' || zIn[1]=='X') ){ sqlite3_int64 i = 0; int rc = sqlite3DecOrHexToI64(zIn, &i); if( rc<=1 ){ jsonPrintf(100,p,"%lld",i); }else{ assert( rc==2 ); jsonAppendRawNZ(p, "9.0e999", 7); } return; } assert( N>0 ); jsonAppendRawNZ(p, zIn, N); } /* ** The zIn[0..N] string is a JSON5 real literal. Append to p a translation ** of the string literal that standard JSON and that omits all JSON5 ** features. */ |
︙ | ︙ | |||
200031 200032 200033 200034 200035 200036 200037 | zIn += i; N -= i; jsonAppendChar(p, '0'); break; } } if( N>0 ){ | | | | 201755 201756 201757 201758 201759 201760 201761 201762 201763 201764 201765 201766 201767 201768 201769 201770 201771 201772 201773 201774 201775 201776 201777 201778 201779 201780 201781 201782 201783 201784 201785 | zIn += i; N -= i; jsonAppendChar(p, '0'); break; } } if( N>0 ){ jsonAppendRawNZ(p, zIn, N); } } /* ** Append a function parameter value to the JSON string under ** construction. */ static void jsonAppendValue( JsonString *p, /* Append to this JSON string */ sqlite3_value *pValue /* Value to append */ ){ switch( sqlite3_value_type(pValue) ){ case SQLITE_NULL: { jsonAppendRawNZ(p, "null", 4); break; } case SQLITE_FLOAT: { jsonPrintf(100, p, "%!0.15g", sqlite3_value_double(pValue)); break; } case SQLITE_INTEGER: { |
︙ | ︙ | |||
200083 200084 200085 200086 200087 200088 200089 200090 200091 200092 | break; } } } /* Make the JSON in p the result of the SQL function. */ static void jsonResult(JsonString *p){ if( p->bErr==0 ){ | > > > | | > > > > | < | > | > > > | 201807 201808 201809 201810 201811 201812 201813 201814 201815 201816 201817 201818 201819 201820 201821 201822 201823 201824 201825 201826 201827 201828 201829 201830 201831 201832 201833 201834 201835 201836 201837 201838 201839 | break; } } } /* Make the JSON in p the result of the SQL function. ** ** The JSON string is reset. */ static void jsonResult(JsonString *p){ if( p->bErr==0 ){ if( p->bStatic ){ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, SQLITE_TRANSIENT, SQLITE_UTF8); }else if( jsonForceRCStr(p) ){ sqlite3RCStrRef(p->zBuf); sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, (void(*)(void*))sqlite3RCStrUnref, SQLITE_UTF8); } } if( p->bErr==1 ){ sqlite3_result_error_nomem(p->pCtx); } jsonReset(p); } /************************************************************************** ** Utility routines for dealing with JsonNode and JsonParse objects **************************************************************************/ /* |
︙ | ︙ | |||
200116 200117 200118 200119 200120 200121 200122 | } /* ** Reclaim all memory allocated by a JsonParse object. But do not ** delete the JsonParse object itself. */ static void jsonParseReset(JsonParse *pParse){ | > > > > > > > > | | > > | | > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | > > > | > > > > | | | | < > | | | > | > | > | | | > | | | | > | | > < > > > > > > | | > > > > | | > | 201850 201851 201852 201853 201854 201855 201856 201857 201858 201859 201860 201861 201862 201863 201864 201865 201866 201867 201868 201869 201870 201871 201872 201873 201874 201875 201876 201877 201878 201879 201880 201881 201882 201883 201884 201885 201886 201887 201888 201889 201890 201891 201892 201893 201894 201895 201896 201897 201898 201899 201900 201901 201902 201903 201904 201905 201906 201907 201908 201909 201910 201911 201912 201913 201914 201915 201916 201917 201918 201919 201920 201921 201922 201923 201924 201925 201926 201927 201928 201929 201930 201931 201932 201933 201934 201935 201936 201937 201938 201939 201940 201941 201942 201943 201944 201945 201946 201947 201948 201949 201950 201951 201952 201953 201954 201955 201956 201957 201958 201959 201960 201961 201962 201963 201964 201965 201966 201967 201968 201969 201970 201971 201972 201973 201974 201975 201976 201977 201978 201979 201980 201981 201982 201983 201984 201985 201986 201987 201988 201989 201990 201991 201992 201993 201994 201995 201996 201997 201998 201999 202000 202001 202002 202003 202004 202005 202006 202007 202008 202009 202010 202011 202012 202013 202014 202015 202016 202017 202018 202019 202020 202021 202022 202023 202024 202025 202026 202027 202028 202029 202030 202031 202032 202033 202034 202035 202036 202037 202038 202039 202040 202041 202042 202043 202044 202045 202046 202047 202048 202049 202050 202051 202052 202053 202054 202055 202056 202057 202058 202059 202060 202061 202062 202063 202064 202065 202066 202067 202068 202069 202070 202071 202072 202073 202074 202075 202076 202077 202078 202079 | } /* ** Reclaim all memory allocated by a JsonParse object. But do not ** delete the JsonParse object itself. */ static void jsonParseReset(JsonParse *pParse){ while( pParse->pClup ){ JsonCleanup *pTask = pParse->pClup; pParse->pClup = pTask->pJCNext; pTask->xOp(pTask->pArg); sqlite3_free(pTask); } assert( pParse->nJPRef<=1 ); if( pParse->aNode ){ sqlite3_free(pParse->aNode); pParse->aNode = 0; } pParse->nNode = 0; pParse->nAlloc = 0; if( pParse->aUp ){ sqlite3_free(pParse->aUp); pParse->aUp = 0; } if( pParse->bJsonIsRCStr ){ sqlite3RCStrUnref(pParse->zJson); pParse->zJson = 0; pParse->bJsonIsRCStr = 0; } if( pParse->zAlt ){ sqlite3RCStrUnref(pParse->zAlt); pParse->zAlt = 0; } } /* ** Free a JsonParse object that was obtained from sqlite3_malloc(). ** ** Note that destroying JsonParse might call sqlite3RCStrUnref() to ** destroy the zJson value. The RCStr object might recursively invoke ** JsonParse to destroy this pParse object again. Take care to ensure ** that this recursive destructor sequence terminates harmlessly. */ static void jsonParseFree(JsonParse *pParse){ if( pParse->nJPRef>1 ){ pParse->nJPRef--; }else{ jsonParseReset(pParse); sqlite3_free(pParse); } } /* ** Add a cleanup task to the JsonParse object. ** ** If an OOM occurs, the cleanup operation happens immediately ** and this function returns SQLITE_NOMEM. */ static int jsonParseAddCleanup( JsonParse *pParse, /* Add the cleanup task to this parser */ void(*xOp)(void*), /* The cleanup task */ void *pArg /* Argument to the cleanup */ ){ JsonCleanup *pTask = sqlite3_malloc64( sizeof(*pTask) ); if( pTask==0 ){ pParse->oom = 1; xOp(pArg); return SQLITE_ERROR; } pTask->pJCNext = pParse->pClup; pParse->pClup = pTask; pTask->xOp = xOp; pTask->pArg = pArg; return SQLITE_OK; } /* ** Convert the JsonNode pNode into a pure JSON string and ** append to pOut. Subsubstructure is also included. Return ** the number of JsonNode objects that are encoded. */ static void jsonRenderNode( JsonParse *pParse, /* the complete parse of the JSON */ JsonNode *pNode, /* The node to render */ JsonString *pOut /* Write JSON here */ ){ assert( pNode!=0 ); while( (pNode->jnFlags & JNODE_REPLACE)!=0 && pParse->useMod ){ u32 idx = (u32)(pNode - pParse->aNode); u32 i = pParse->iSubst; while( 1 /*exit-by-break*/ ){ assert( i<pParse->nNode ); assert( pParse->aNode[i].eType==JSON_SUBST ); assert( pParse->aNode[i].eU==4 ); assert( pParse->aNode[i].u.iPrev<i ); if( pParse->aNode[i].n==idx ){ pNode = &pParse->aNode[i+1]; break; } i = pParse->aNode[i].u.iPrev; } } switch( pNode->eType ){ default: { assert( pNode->eType==JSON_NULL ); jsonAppendRawNZ(pOut, "null", 4); break; } case JSON_TRUE: { jsonAppendRawNZ(pOut, "true", 4); break; } case JSON_FALSE: { jsonAppendRawNZ(pOut, "false", 5); break; } case JSON_STRING: { assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_RAW ){ if( pNode->jnFlags & JNODE_LABEL ){ jsonAppendChar(pOut, '"'); jsonAppendRaw(pOut, pNode->u.zJContent, pNode->n); jsonAppendChar(pOut, '"'); }else{ jsonAppendString(pOut, pNode->u.zJContent, pNode->n); } }else if( pNode->jnFlags & JNODE_JSON5 ){ jsonAppendNormalizedString(pOut, pNode->u.zJContent, pNode->n); }else{ assert( pNode->n>0 ); jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n); } break; } case JSON_REAL: { assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_JSON5 ){ jsonAppendNormalizedReal(pOut, pNode->u.zJContent, pNode->n); }else{ assert( pNode->n>0 ); jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n); } break; } case JSON_INT: { assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_JSON5 ){ jsonAppendNormalizedInt(pOut, pNode->u.zJContent, pNode->n); }else{ assert( pNode->n>0 ); jsonAppendRawNZ(pOut, pNode->u.zJContent, pNode->n); } break; } case JSON_ARRAY: { u32 j = 1; jsonAppendChar(pOut, '['); for(;;){ while( j<=pNode->n ){ if( (pNode[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){ jsonAppendSeparator(pOut); jsonRenderNode(pParse, &pNode[j], pOut); } j += jsonNodeSize(&pNode[j]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pNode->eU==2 ); pNode = &pParse->aNode[pNode->u.iAppend]; j = 1; } jsonAppendChar(pOut, ']'); break; } case JSON_OBJECT: { u32 j = 1; jsonAppendChar(pOut, '{'); for(;;){ while( j<=pNode->n ){ if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){ jsonAppendSeparator(pOut); jsonRenderNode(pParse, &pNode[j], pOut); jsonAppendChar(pOut, ':'); jsonRenderNode(pParse, &pNode[j+1], pOut); } j += 1 + jsonNodeSize(&pNode[j+1]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pNode->eU==2 ); pNode = &pParse->aNode[pNode->u.iAppend]; j = 1; } jsonAppendChar(pOut, '}'); break; } } } /* ** Return a JsonNode and all its descendants as a JSON string. */ static void jsonReturnJson( JsonParse *pParse, /* The complete JSON */ JsonNode *pNode, /* Node to return */ sqlite3_context *pCtx, /* Return value for this function */ int bGenerateAlt /* Also store the rendered text in zAlt */ ){ JsonString s; if( pParse->oom ){ sqlite3_result_error_nomem(pCtx); return; } if( pParse->nErr==0 ){ jsonInit(&s, pCtx); jsonRenderNode(pParse, pNode, &s); if( bGenerateAlt && pParse->zAlt==0 && jsonForceRCStr(&s) ){ pParse->zAlt = sqlite3RCStrRef(s.zBuf); pParse->nAlt = s.nUsed; } jsonResult(&s); sqlite3_result_subtype(pCtx, JSON_SUBTYPE); } } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ |
︙ | ︙ | |||
200294 200295 200296 200297 200298 200299 200300 200301 | return v; } /* ** Make the JsonNode the return value of the function. */ static void jsonReturn( JsonNode *pNode, /* Node to return */ | > | < < | 202103 202104 202105 202106 202107 202108 202109 202110 202111 202112 202113 202114 202115 202116 202117 202118 202119 202120 202121 202122 202123 202124 202125 202126 202127 202128 202129 202130 202131 202132 202133 202134 202135 202136 202137 202138 202139 | return v; } /* ** Make the JsonNode the return value of the function. */ static void jsonReturn( JsonParse *pParse, /* Complete JSON parse tree */ JsonNode *pNode, /* Node to return */ sqlite3_context *pCtx /* Return value for this function */ ){ switch( pNode->eType ){ default: { assert( pNode->eType==JSON_NULL ); sqlite3_result_null(pCtx); break; } case JSON_TRUE: { sqlite3_result_int(pCtx, 1); break; } case JSON_FALSE: { sqlite3_result_int(pCtx, 0); break; } case JSON_INT: { sqlite3_int64 i = 0; int rc; int bNeg = 0; const char *z; assert( pNode->eU==1 ); z = pNode->u.zJContent; if( z[0]=='-' ){ z++; bNeg = 1; } else if( z[0]=='+' ){ z++; } rc = sqlite3DecOrHexToI64(z, &i); if( rc<=1 ){ |
︙ | ︙ | |||
200443 200444 200445 200446 200447 200448 200449 | zOut[j] = 0; sqlite3_result_text(pCtx, zOut, j, sqlite3_free); } break; } case JSON_ARRAY: case JSON_OBJECT: { | | | 202251 202252 202253 202254 202255 202256 202257 202258 202259 202260 202261 202262 202263 202264 202265 | zOut[j] = 0; sqlite3_result_text(pCtx, zOut, j, sqlite3_free); } break; } case JSON_ARRAY: case JSON_OBJECT: { jsonReturnJson(pParse, pNode, pCtx, 0); break; } } } /* Forward reference */ static int jsonParseAddNode(JsonParse*,u32,u32,const char*); |
︙ | ︙ | |||
200465 200466 200467 200468 200469 200470 200471 200472 200473 200474 200475 200476 200477 200478 200479 200480 200481 200482 200483 200484 200485 200486 200487 | #elif defined(_MSC_VER) && _MSC_VER>=1310 # define JSON_NOINLINE __declspec(noinline) #else # define JSON_NOINLINE #endif static JSON_NOINLINE int jsonParseAddNodeExpand( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ u32 nNew; JsonNode *pNew; assert( pParse->nNode>=pParse->nAlloc ); if( pParse->oom ) return -1; nNew = pParse->nAlloc*2 + 10; pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew); if( pNew==0 ){ pParse->oom = 1; return -1; } | > > > > > > | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 202273 202274 202275 202276 202277 202278 202279 202280 202281 202282 202283 202284 202285 202286 202287 202288 202289 202290 202291 202292 202293 202294 202295 202296 202297 202298 202299 202300 202301 202302 202303 202304 202305 202306 202307 202308 202309 202310 202311 202312 202313 202314 202315 202316 202317 202318 202319 202320 202321 202322 202323 202324 202325 202326 202327 202328 202329 202330 202331 202332 202333 202334 202335 202336 202337 202338 202339 202340 202341 202342 202343 202344 202345 202346 202347 202348 202349 202350 202351 202352 202353 202354 202355 202356 202357 202358 202359 202360 202361 202362 202363 202364 202365 202366 202367 202368 202369 202370 202371 202372 202373 202374 202375 202376 202377 202378 202379 202380 202381 202382 202383 202384 202385 202386 | #elif defined(_MSC_VER) && _MSC_VER>=1310 # define JSON_NOINLINE __declspec(noinline) #else # define JSON_NOINLINE #endif /* ** Add a single node to pParse->aNode after first expanding the ** size of the aNode array. Return the index of the new node. ** ** If an OOM error occurs, set pParse->oom and return -1. */ static JSON_NOINLINE int jsonParseAddNodeExpand( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ u32 nNew; JsonNode *pNew; assert( pParse->nNode>=pParse->nAlloc ); if( pParse->oom ) return -1; nNew = pParse->nAlloc*2 + 10; pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew); if( pNew==0 ){ pParse->oom = 1; return -1; } pParse->nAlloc = sqlite3_msize(pNew)/sizeof(JsonNode); pParse->aNode = pNew; assert( pParse->nNode<pParse->nAlloc ); return jsonParseAddNode(pParse, eType, n, zContent); } /* ** Create a new JsonNode instance based on the arguments and append that ** instance to the JsonParse. Return the index in pParse->aNode[] of the ** new node, or -1 if a memory allocation fails. */ static int jsonParseAddNode( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ JsonNode *p; assert( pParse->aNode!=0 || pParse->nNode>=pParse->nAlloc ); if( pParse->nNode>=pParse->nAlloc ){ return jsonParseAddNodeExpand(pParse, eType, n, zContent); } assert( pParse->aNode!=0 ); p = &pParse->aNode[pParse->nNode]; assert( p!=0 ); p->eType = (u8)(eType & 0xff); p->jnFlags = (u8)(eType >> 8); VVA( p->eU = zContent ? 1 : 0 ); p->n = n; p->u.zJContent = zContent; return pParse->nNode++; } /* ** Add an array of new nodes to the current pParse->aNode array. ** Return the index of the first node added. ** ** If an OOM error occurs, set pParse->oom. */ static void jsonParseAddNodeArray( JsonParse *pParse, /* Append the node to this object */ JsonNode *aNode, /* Array of nodes to add */ u32 nNode /* Number of elements in aNew */ ){ assert( aNode!=0 ); assert( nNode>=1 ); if( pParse->nNode + nNode > pParse->nAlloc ){ u32 nNew = pParse->nNode + nNode; JsonNode *aNew = sqlite3_realloc64(pParse->aNode, nNew*sizeof(JsonNode)); if( aNew==0 ){ pParse->oom = 1; return; } pParse->nAlloc = sqlite3_msize(aNew)/sizeof(JsonNode); pParse->aNode = aNew; } memcpy(&pParse->aNode[pParse->nNode], aNode, nNode*sizeof(JsonNode)); pParse->nNode += nNode; } /* ** Add a new JSON_SUBST node. The node immediately following ** this new node will be the substitute content for iNode. */ static int jsonParseAddSubstNode( JsonParse *pParse, /* Add the JSON_SUBST here */ u32 iNode /* References this node */ ){ int idx = jsonParseAddNode(pParse, JSON_SUBST, iNode, 0); if( pParse->oom ) return -1; pParse->aNode[iNode].jnFlags |= JNODE_REPLACE; pParse->aNode[idx].eU = 4; pParse->aNode[idx].u.iPrev = pParse->iSubst; pParse->iSubst = idx; pParse->hasMod = 1; pParse->useMod = 1; return idx; } /* ** Return true if z[] begins with 2 (or more) hexadecimal digits */ static int jsonIs2Hex(const char *z){ return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]); } |
︙ | ︙ | |||
200677 200678 200679 200680 200681 200682 200683 | /* ** Parse a single JSON value which begins at pParse->zJson[i]. Return the ** index of the first character past the end of the value parsed. ** ** Special return values: ** | | | 202540 202541 202542 202543 202544 202545 202546 202547 202548 202549 202550 202551 202552 202553 202554 | /* ** Parse a single JSON value which begins at pParse->zJson[i]. Return the ** index of the first character past the end of the value parsed. ** ** Special return values: ** ** 0 End of input ** -1 Syntax error ** -2 '}' seen ** -3 ']' seen ** -4 ',' seen ** -5 ':' seen */ static int jsonParseValue(JsonParse *pParse, u32 i){ |
︙ | ︙ | |||
200702 200703 200704 200705 200706 200707 200708 200709 200710 200711 200712 200713 200714 200715 | iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); if( iThis<0 ) return -1; if( ++pParse->iDepth > JSON_MAX_DEPTH ){ pParse->iErr = i; return -1; } for(j=i+1;;j++){ x = jsonParseValue(pParse, j); if( x<=0 ){ if( x==(-2) ){ j = pParse->iErr; if( pParse->nNode!=(u32)iThis+1 ) pParse->hasNonstd = 1; break; } | > | 202565 202566 202567 202568 202569 202570 202571 202572 202573 202574 202575 202576 202577 202578 202579 | iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); if( iThis<0 ) return -1; if( ++pParse->iDepth > JSON_MAX_DEPTH ){ pParse->iErr = i; return -1; } for(j=i+1;;j++){ u32 nNode = pParse->nNode; x = jsonParseValue(pParse, j); if( x<=0 ){ if( x==(-2) ){ j = pParse->iErr; if( pParse->nNode!=(u32)iThis+1 ) pParse->hasNonstd = 1; break; } |
︙ | ︙ | |||
200728 200729 200730 200731 200732 200733 200734 | x = k; }else{ if( x!=-1 ) pParse->iErr = j; return -1; } } if( pParse->oom ) return -1; | | | 202592 202593 202594 202595 202596 202597 202598 202599 202600 202601 202602 202603 202604 202605 202606 | x = k; }else{ if( x!=-1 ) pParse->iErr = j; return -1; } } if( pParse->oom ) return -1; pNode = &pParse->aNode[nNode]; if( pNode->eType!=JSON_STRING ){ pParse->iErr = j; return -1; } pNode->jnFlags |= JNODE_LABEL; j = x; if( z[j]==':' ){ |
︙ | ︙ | |||
200851 200852 200853 200854 200855 200856 200857 | jnFlags = JNODE_JSON5; goto parse_string; case '"': /* Parse string */ jnFlags = 0; parse_string: cDelim = z[i]; | | | | < < | < | | > > | < | 202715 202716 202717 202718 202719 202720 202721 202722 202723 202724 202725 202726 202727 202728 202729 202730 202731 202732 202733 202734 202735 202736 202737 202738 202739 202740 202741 202742 202743 202744 202745 202746 202747 202748 202749 202750 202751 202752 202753 202754 202755 202756 202757 202758 | jnFlags = JNODE_JSON5; goto parse_string; case '"': /* Parse string */ jnFlags = 0; parse_string: cDelim = z[i]; for(j=i+1; 1; j++){ if( jsonIsOk[(unsigned char)z[j]] ) continue; c = z[j]; if( c==cDelim ){ break; }else if( c=='\\' ){ c = z[++j]; if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f' || c=='n' || c=='r' || c=='t' || (c=='u' && jsonIs4Hex(&z[j+1])) ){ jnFlags |= JNODE_ESCAPE; }else if( c=='\'' || c=='0' || c=='v' || c=='\n' || (0xe2==(u8)c && 0x80==(u8)z[j+1] && (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2])) || (c=='x' && jsonIs2Hex(&z[j+1])) ){ jnFlags |= (JNODE_ESCAPE|JNODE_JSON5); pParse->hasNonstd = 1; }else if( c=='\r' ){ if( z[j+1]=='\n' ) j++; jnFlags |= (JNODE_ESCAPE|JNODE_JSON5); pParse->hasNonstd = 1; }else{ pParse->iErr = j; return -1; } }else if( c<=0x1f ){ /* Control characters are not allowed in strings */ pParse->iErr = j; return -1; } } jsonParseAddNode(pParse, JSON_STRING | (jnFlags<<8), j+1-i, &z[i]); return j+1; } case 't': { if( strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonParseAddNode(pParse, JSON_TRUE, 0, 0); |
︙ | ︙ | |||
201118 201119 201120 201121 201122 201123 201124 | return -1; /* Syntax error */ } } /* End switch(z[i]) */ } /* ** Parse a complete JSON string. Return 0 on success or non-zero if there | | | > | | < < < | | 202980 202981 202982 202983 202984 202985 202986 202987 202988 202989 202990 202991 202992 202993 202994 202995 202996 202997 202998 202999 203000 203001 203002 203003 203004 203005 | return -1; /* Syntax error */ } } /* End switch(z[i]) */ } /* ** Parse a complete JSON string. Return 0 on success or non-zero if there ** are any errors. If an error occurs, free all memory held by pParse, ** but not pParse itself. ** ** pParse must be initialized to an empty parse object prior to calling ** this routine. */ static int jsonParse( JsonParse *pParse, /* Initialize and fill this JsonParse object */ sqlite3_context *pCtx /* Report errors here */ ){ int i; const char *zJson = pParse->zJson; i = jsonParseValue(pParse, 0); if( pParse->oom ) i = -1; if( i>0 ){ assert( pParse->iDepth==0 ); while( fast_isspace(zJson[i]) ) i++; if( zJson[i] ){ i += json5Whitespace(&zJson[i]); |
︙ | ︙ | |||
201159 201160 201161 201162 201163 201164 201165 201166 201167 201168 201169 201170 201171 201172 | } } jsonParseReset(pParse); return 1; } return 0; } /* Mark node i of pParse as being a child of iParent. Call recursively ** to fill in all the descendants of node i. */ static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){ JsonNode *pNode = &pParse->aNode[i]; u32 j; | > | 203019 203020 203021 203022 203023 203024 203025 203026 203027 203028 203029 203030 203031 203032 203033 | } } jsonParseReset(pParse); return 1; } return 0; } /* Mark node i of pParse as being a child of iParent. Call recursively ** to fill in all the descendants of node i. */ static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){ JsonNode *pNode = &pParse->aNode[i]; u32 j; |
︙ | ︙ | |||
201209 201210 201211 201212 201213 201214 201215 | /* ** Magic number used for the JSON parse cache in sqlite3_get_auxdata() */ #define JSON_CACHE_ID (-429938) /* First cache entry */ #define JSON_CACHE_SZ 4 /* Max number of cache entries */ /* | | > | | | | > > > > | | < | | > > > > > > > | | | > | | > > > | > > > > > > > > > > > > > > > > > > > | > > > > | | > > | > | > | 203070 203071 203072 203073 203074 203075 203076 203077 203078 203079 203080 203081 203082 203083 203084 203085 203086 203087 203088 203089 203090 203091 203092 203093 203094 203095 203096 203097 203098 203099 203100 203101 203102 203103 203104 203105 203106 203107 203108 203109 203110 203111 203112 203113 203114 203115 203116 203117 203118 203119 203120 203121 203122 203123 203124 203125 203126 203127 203128 203129 203130 203131 203132 203133 203134 203135 203136 203137 203138 203139 203140 203141 203142 203143 203144 203145 203146 203147 203148 203149 203150 203151 203152 203153 203154 203155 203156 203157 203158 203159 203160 203161 203162 203163 203164 203165 203166 203167 203168 203169 203170 203171 203172 203173 203174 203175 203176 203177 203178 203179 203180 203181 203182 203183 203184 203185 203186 203187 203188 203189 203190 203191 203192 203193 203194 203195 203196 203197 203198 | /* ** Magic number used for the JSON parse cache in sqlite3_get_auxdata() */ #define JSON_CACHE_ID (-429938) /* First cache entry */ #define JSON_CACHE_SZ 4 /* Max number of cache entries */ /* ** Obtain a complete parse of the JSON found in the pJson argument ** ** Use the sqlite3_get_auxdata() cache to find a preexisting parse ** if it is available. If the cache is not available or if it ** is no longer valid, parse the JSON again and return the new parse. ** Also register the new parse so that it will be available for ** future sqlite3_get_auxdata() calls. ** ** If an error occurs and pErrCtx!=0 then report the error on pErrCtx ** and return NULL. ** ** The returned pointer (if it is not NULL) is owned by the cache in ** most cases, not the caller. The caller does NOT need to invoke ** jsonParseFree(), in most cases. ** ** Except, if an error occurs and pErrCtx==0 then return the JsonParse ** object with JsonParse.nErr non-zero and the caller will own the JsonParse ** object. In that case, it will be the responsibility of the caller to ** invoke jsonParseFree(). To summarize: ** ** pErrCtx!=0 || p->nErr==0 ==> Return value p is owned by the ** cache. Call does not need to ** free it. ** ** pErrCtx==0 && p->nErr!=0 ==> Return value is owned by the caller ** and so the caller must free it. */ static JsonParse *jsonParseCached( sqlite3_context *pCtx, /* Context to use for cache search */ sqlite3_value *pJson, /* Function param containing JSON text */ sqlite3_context *pErrCtx, /* Write parse errors here if not NULL */ int bUnedited /* No prior edits allowed */ ){ char *zJson = (char*)sqlite3_value_text(pJson); int nJson = sqlite3_value_bytes(pJson); JsonParse *p; JsonParse *pMatch = 0; int iKey; int iMinKey = 0; u32 iMinHold = 0xffffffff; u32 iMaxHold = 0; int bJsonRCStr; if( zJson==0 ) return 0; for(iKey=0; iKey<JSON_CACHE_SZ; iKey++){ p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iKey); if( p==0 ){ iMinKey = iKey; break; } if( pMatch==0 && p->nJson==nJson && (p->hasMod==0 || bUnedited==0) && (p->zJson==zJson || memcmp(p->zJson,zJson,nJson)==0) ){ p->nErr = 0; p->useMod = 0; pMatch = p; }else if( pMatch==0 && p->zAlt!=0 && bUnedited==0 && p->nAlt==nJson && memcmp(p->zAlt, zJson, nJson)==0 ){ p->nErr = 0; p->useMod = 1; pMatch = p; }else if( p->iHold<iMinHold ){ iMinHold = p->iHold; iMinKey = iKey; } if( p->iHold>iMaxHold ){ iMaxHold = p->iHold; } } if( pMatch ){ /* The input JSON text was found in the cache. Use the preexisting ** parse of this JSON */ pMatch->nErr = 0; pMatch->iHold = iMaxHold+1; assert( pMatch->nJPRef>0 ); /* pMatch is owned by the cache */ return pMatch; } /* The input JSON was not found anywhere in the cache. We will need ** to parse it ourselves and generate a new JsonParse object. */ bJsonRCStr = sqlite3ValueIsOfClass(pJson,(void(*)(void*))sqlite3RCStrUnref); p = sqlite3_malloc64( sizeof(*p) + (bJsonRCStr ? 0 : nJson+1) ); if( p==0 ){ sqlite3_result_error_nomem(pCtx); return 0; } memset(p, 0, sizeof(*p)); if( bJsonRCStr ){ p->zJson = sqlite3RCStrRef(zJson); p->bJsonIsRCStr = 1; }else{ p->zJson = (char*)&p[1]; memcpy(p->zJson, zJson, nJson+1); } p->nJPRef = 1; if( jsonParse(p, pErrCtx) ){ if( pErrCtx==0 ){ p->nErr = 1; assert( p->nJPRef==1 ); /* Caller will own the new JsonParse object p */ return p; } jsonParseFree(p); return 0; } p->nJson = nJson; p->iHold = iMaxHold+1; /* Transfer ownership of the new JsonParse to the cache */ sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p, (void(*)(void*))jsonParseFree); return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey); } /* ** Compare the OBJECT label at pNode against zKey,nKey. Return true on |
︙ | ︙ | |||
201332 201333 201334 201335 201336 201337 201338 | u32 iRoot, /* Begin the search at this node */ const char *zPath, /* The path to search */ int *pApnd, /* Append nodes to complete path if not NULL */ const char **pzErr /* Make *pzErr point to any syntax error in zPath */ ){ u32 i, j, nKey; const char *zKey; | | | > > > > > > > > > > > > > > > > > > | > > > > | 203235 203236 203237 203238 203239 203240 203241 203242 203243 203244 203245 203246 203247 203248 203249 203250 203251 203252 203253 203254 203255 203256 203257 203258 203259 203260 203261 203262 203263 203264 203265 203266 203267 203268 203269 203270 203271 203272 203273 | u32 iRoot, /* Begin the search at this node */ const char *zPath, /* The path to search */ int *pApnd, /* Append nodes to complete path if not NULL */ const char **pzErr /* Make *pzErr point to any syntax error in zPath */ ){ u32 i, j, nKey; const char *zKey; JsonNode *pRoot; if( pParse->oom ) return 0; pRoot = &pParse->aNode[iRoot]; if( pRoot->jnFlags & (JNODE_REPLACE|JNODE_REMOVE) && pParse->useMod ){ while( (pRoot->jnFlags & JNODE_REPLACE)!=0 ){ u32 idx = (u32)(pRoot - pParse->aNode); i = pParse->iSubst; while( 1 /*exit-by-break*/ ){ assert( i<pParse->nNode ); assert( pParse->aNode[i].eType==JSON_SUBST ); assert( pParse->aNode[i].eU==4 ); assert( pParse->aNode[i].u.iPrev<i ); if( pParse->aNode[i].n==idx ){ pRoot = &pParse->aNode[i+1]; iRoot = i+1; break; } i = pParse->aNode[i].u.iPrev; } } if( pRoot->jnFlags & JNODE_REMOVE ){ return 0; } } if( zPath[0]==0 ) return pRoot; if( zPath[0]=='.' ){ if( pRoot->eType!=JSON_OBJECT ) return 0; zPath++; if( zPath[0]=='"' ){ zKey = zPath + 1; for(i=1; zPath[i] && zPath[i]!='"'; i++){} nKey = i-1; |
︙ | ︙ | |||
201368 201369 201370 201371 201372 201373 201374 201375 | if( jsonLabelCompare(pRoot+j, zKey, nKey) ){ return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr); } j++; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; assert( pRoot->eU==2 ); | > | > | | > | | 203293 203294 203295 203296 203297 203298 203299 203300 203301 203302 203303 203304 203305 203306 203307 203308 203309 203310 203311 203312 203313 203314 203315 203316 203317 203318 203319 203320 203321 203322 203323 203324 203325 203326 203327 203328 203329 203330 203331 203332 203333 203334 203335 203336 203337 203338 203339 203340 203341 203342 203343 203344 203345 203346 203347 203348 203349 203350 203351 203352 | if( jsonLabelCompare(pRoot+j, zKey, nKey) ){ return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr); } j++; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pRoot->eU==2 ); iRoot = pRoot->u.iAppend; pRoot = &pParse->aNode[iRoot]; j = 1; } if( pApnd ){ u32 iStart, iLabel; JsonNode *pNode; assert( pParse->useMod ); iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0); iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey); zPath += i; pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr); if( pParse->oom ) return 0; if( pNode ){ pRoot = &pParse->aNode[iRoot]; assert( pRoot->eU==0 ); pRoot->u.iAppend = iStart; pRoot->jnFlags |= JNODE_APPEND; VVA( pRoot->eU = 2 ); pParse->aNode[iLabel].jnFlags |= JNODE_RAW; } return pNode; } }else if( zPath[0]=='[' ){ i = 0; j = 1; while( sqlite3Isdigit(zPath[j]) ){ i = i*10 + zPath[j] - '0'; j++; } if( j<2 || zPath[j]!=']' ){ if( zPath[1]=='#' ){ JsonNode *pBase = pRoot; int iBase = iRoot; if( pRoot->eType!=JSON_ARRAY ) return 0; for(;;){ while( j<=pBase->n ){ if( (pBase[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i++; j += jsonNodeSize(&pBase[j]); } if( (pBase->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pBase->eU==2 ); iBase = pBase->u.iAppend; pBase = &pParse->aNode[iBase]; j = 1; } j = 2; if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){ unsigned int x = 0; j = 3; |
︙ | ︙ | |||
201438 201439 201440 201441 201442 201443 201444 | return 0; } } if( pRoot->eType!=JSON_ARRAY ) return 0; zPath += j + 1; j = 1; for(;;){ | | > > | > | > | | 203366 203367 203368 203369 203370 203371 203372 203373 203374 203375 203376 203377 203378 203379 203380 203381 203382 203383 203384 203385 203386 203387 203388 203389 203390 203391 203392 203393 203394 203395 203396 203397 203398 203399 203400 203401 203402 203403 203404 203405 203406 | return 0; } } if( pRoot->eType!=JSON_ARRAY ) return 0; zPath += j + 1; j = 1; for(;;){ while( j<=pRoot->n && (i>0 || ((pRoot[j].jnFlags & JNODE_REMOVE)!=0 && pParse->useMod)) ){ if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i--; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; if( pParse->useMod==0 ) break; assert( pRoot->eU==2 ); iRoot = pRoot->u.iAppend; pRoot = &pParse->aNode[iRoot]; j = 1; } if( j<=pRoot->n ){ return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr); } if( i==0 && pApnd ){ u32 iStart; JsonNode *pNode; assert( pParse->useMod ); iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0); pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr); if( pParse->oom ) return 0; if( pNode ){ pRoot = &pParse->aNode[iRoot]; assert( pRoot->eU==0 ); pRoot->u.iAppend = iStart; pRoot->jnFlags |= JNODE_APPEND; VVA( pRoot->eU = 2 ); } return pNode; } }else{ *pzErr = zPath; |
︙ | ︙ | |||
201586 201587 201588 201589 201590 201591 201592 201593 | } } /**************************************************************************** ** SQL functions used for testing and debugging ****************************************************************************/ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > | > > > > > > > < | < | | < | > > > | | | | | | < | < < < < < < < < < | < | | | 203518 203519 203520 203521 203522 203523 203524 203525 203526 203527 203528 203529 203530 203531 203532 203533 203534 203535 203536 203537 203538 203539 203540 203541 203542 203543 203544 203545 203546 203547 203548 203549 203550 203551 203552 203553 203554 203555 203556 203557 203558 203559 203560 203561 203562 203563 203564 203565 203566 203567 203568 203569 203570 203571 203572 203573 203574 203575 203576 203577 203578 203579 203580 203581 203582 203583 203584 203585 203586 203587 203588 203589 203590 203591 203592 203593 203594 203595 203596 203597 203598 203599 203600 203601 203602 203603 203604 203605 203606 203607 203608 203609 203610 203611 203612 203613 203614 203615 203616 | } } /**************************************************************************** ** SQL functions used for testing and debugging ****************************************************************************/ #if SQLITE_DEBUG /* ** Print N node entries. */ static void jsonDebugPrintNodeEntries( JsonNode *aNode, /* First node entry to print */ int N /* Number of node entries to print */ ){ int i; for(i=0; i<N; i++){ const char *zType; if( aNode[i].jnFlags & JNODE_LABEL ){ zType = "label"; }else{ zType = jsonType[aNode[i].eType]; } printf("node %4u: %-7s n=%-5d", i, zType, aNode[i].n); if( (aNode[i].jnFlags & ~JNODE_LABEL)!=0 ){ u8 f = aNode[i].jnFlags; if( f & JNODE_RAW ) printf(" RAW"); if( f & JNODE_ESCAPE ) printf(" ESCAPE"); if( f & JNODE_REMOVE ) printf(" REMOVE"); if( f & JNODE_REPLACE ) printf(" REPLACE"); if( f & JNODE_APPEND ) printf(" APPEND"); if( f & JNODE_JSON5 ) printf(" JSON5"); } switch( aNode[i].eU ){ case 1: printf(" zJContent=[%.*s]\n", aNode[i].n, aNode[i].u.zJContent); break; case 2: printf(" iAppend=%u\n", aNode[i].u.iAppend); break; case 3: printf(" iKey=%u\n", aNode[i].u.iKey); break; case 4: printf(" iPrev=%u\n", aNode[i].u.iPrev); break; default: printf("\n"); } } } #endif /* SQLITE_DEBUG */ #if 0 /* 1 for debugging. 0 normally. Requires -DSQLITE_DEBUG too */ static void jsonDebugPrintParse(JsonParse *p){ jsonDebugPrintNodeEntries(p->aNode, p->nNode); } static void jsonDebugPrintNode(JsonNode *pNode){ jsonDebugPrintNodeEntries(pNode, jsonNodeSize(pNode)); } #else /* The usual case */ # define jsonDebugPrintNode(X) # define jsonDebugPrintParse(X) #endif #ifdef SQLITE_DEBUG /* ** SQL function: json_parse(JSON) ** ** Parse JSON using jsonParseCached(). Then print a dump of that ** parse on standard output. Return the mimified JSON result, just ** like the json() function. */ static void jsonParseFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ assert( argc==1 ); p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; printf("nNode = %u\n", p->nNode); printf("nAlloc = %u\n", p->nAlloc); printf("nJson = %d\n", p->nJson); printf("nAlt = %d\n", p->nAlt); printf("nErr = %u\n", p->nErr); printf("oom = %u\n", p->oom); printf("hasNonstd = %u\n", p->hasNonstd); printf("useMod = %u\n", p->useMod); printf("hasMod = %u\n", p->hasMod); printf("nJPRef = %u\n", p->nJPRef); printf("iSubst = %u\n", p->iSubst); printf("iHold = %u\n", p->iHold); jsonDebugPrintNodeEntries(p->aNode, p->nNode); jsonReturnJson(p, p->aNode, ctx, 1); } /* ** The json_test1(JSON) function return true (1) if the input is JSON ** text generated by another json function. It returns (0) if the input ** is not known to be JSON. */ |
︙ | ︙ | |||
201711 201712 201713 201714 201715 201716 201717 | sqlite3_value **argv ){ JsonParse *p; /* The parse */ sqlite3_int64 n = 0; u32 i; JsonNode *pNode; | | | | | > > > > > | 203686 203687 203688 203689 203690 203691 203692 203693 203694 203695 203696 203697 203698 203699 203700 203701 203702 203703 203704 203705 203706 203707 203708 203709 203710 203711 203712 203713 203714 203715 203716 203717 203718 203719 203720 | sqlite3_value **argv ){ JsonParse *p; /* The parse */ sqlite3_int64 n = 0; u32 i; JsonNode *pNode; p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; assert( p->nNode ); if( argc==2 ){ const char *zPath = (const char*)sqlite3_value_text(argv[1]); pNode = jsonLookup(p, zPath, 0, ctx); }else{ pNode = p->aNode; } if( pNode==0 ){ return; } if( pNode->eType==JSON_ARRAY ){ while( 1 /*exit-by-break*/ ){ for(i=1; i<=pNode->n; n++){ i += jsonNodeSize(&pNode[i]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; if( p->useMod==0 ) break; assert( pNode->eU==2 ); pNode = &p->aNode[pNode->u.iAppend]; } } sqlite3_result_int64(ctx, n); } /* ** Bit values for the flags passed into jsonExtractFunc() or |
︙ | ︙ | |||
201773 201774 201775 201776 201777 201778 201779 | JsonParse *p; /* The parse */ JsonNode *pNode; const char *zPath; int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); JsonString jx; if( argc<2 ) return; | | | | | | | | | | | 203753 203754 203755 203756 203757 203758 203759 203760 203761 203762 203763 203764 203765 203766 203767 203768 203769 203770 203771 203772 203773 203774 203775 203776 203777 203778 203779 203780 203781 203782 203783 203784 203785 203786 203787 203788 203789 203790 203791 203792 203793 203794 203795 203796 203797 203798 203799 203800 203801 203802 203803 203804 203805 203806 203807 203808 203809 203810 203811 203812 203813 203814 203815 203816 203817 203818 203819 203820 203821 203822 203823 203824 | JsonParse *p; /* The parse */ JsonNode *pNode; const char *zPath; int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); JsonString jx; if( argc<2 ) return; p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; if( argc==2 ){ /* With a single PATH argument */ zPath = (const char*)sqlite3_value_text(argv[1]); if( zPath==0 ) return; if( flags & JSON_ABPATH ){ if( zPath[0]!='$' || (zPath[1]!='.' && zPath[1]!='[' && zPath[1]!=0) ){ /* The -> and ->> operators accept abbreviated PATH arguments. This ** is mostly for compatibility with PostgreSQL, but also for ** convenience. ** ** NUMBER ==> $[NUMBER] // PG compatible ** LABEL ==> $.LABEL // PG compatible ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience */ jsonInit(&jx, ctx); if( sqlite3Isdigit(zPath[0]) ){ jsonAppendRawNZ(&jx, "$[", 2); jsonAppendRaw(&jx, zPath, (int)strlen(zPath)); jsonAppendRawNZ(&jx, "]", 2); }else{ jsonAppendRawNZ(&jx, "$.", 1 + (zPath[0]!='[')); jsonAppendRaw(&jx, zPath, (int)strlen(zPath)); jsonAppendChar(&jx, 0); } pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx); jsonReset(&jx); }else{ pNode = jsonLookup(p, zPath, 0, ctx); } if( pNode ){ if( flags & JSON_JSON ){ jsonReturnJson(p, pNode, ctx, 0); }else{ jsonReturn(p, pNode, ctx); sqlite3_result_subtype(ctx, 0); } } }else{ pNode = jsonLookup(p, zPath, 0, ctx); if( p->nErr==0 && pNode ) jsonReturn(p, pNode, ctx); } }else{ /* Two or more PATH arguments results in a JSON array with each ** element of the array being the value selected by one of the PATHs */ int i; jsonInit(&jx, ctx); jsonAppendChar(&jx, '['); for(i=1; i<argc; i++){ zPath = (const char*)sqlite3_value_text(argv[i]); pNode = jsonLookup(p, zPath, 0, ctx); if( p->nErr ) break; jsonAppendSeparator(&jx); if( pNode ){ jsonRenderNode(p, pNode, &jx); }else{ jsonAppendRawNZ(&jx, "null", 4); } } if( i==argc ){ jsonAppendChar(&jx, ']'); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } |
︙ | ︙ | |||
201875 201876 201877 201878 201879 201880 201881 | assert( pPatch[i].eU==1 ); nKey = pPatch[i].n; zKey = pPatch[i].u.zJContent; for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){ assert( pTarget[j].eType==JSON_STRING ); assert( pTarget[j].jnFlags & JNODE_LABEL ); if( jsonSameLabel(&pPatch[i], &pTarget[j]) ){ | | | < < | < < < < | < > | > > | > > > | < | < | | < < | < < | | | | > > | | < > > | | | > > | < < | 203855 203856 203857 203858 203859 203860 203861 203862 203863 203864 203865 203866 203867 203868 203869 203870 203871 203872 203873 203874 203875 203876 203877 203878 203879 203880 203881 203882 203883 203884 203885 203886 203887 203888 203889 203890 203891 203892 203893 203894 203895 203896 203897 203898 203899 203900 203901 203902 203903 203904 203905 203906 203907 203908 203909 203910 203911 203912 203913 203914 203915 203916 203917 203918 203919 203920 203921 203922 203923 203924 203925 203926 203927 203928 203929 203930 203931 203932 203933 203934 203935 203936 203937 | assert( pPatch[i].eU==1 ); nKey = pPatch[i].n; zKey = pPatch[i].u.zJContent; for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){ assert( pTarget[j].eType==JSON_STRING ); assert( pTarget[j].jnFlags & JNODE_LABEL ); if( jsonSameLabel(&pPatch[i], &pTarget[j]) ){ if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_REPLACE) ) break; if( pPatch[i+1].eType==JSON_NULL ){ pTarget[j+1].jnFlags |= JNODE_REMOVE; }else{ JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]); if( pNew==0 ) return 0; if( pNew!=&pParse->aNode[iTarget+j+1] ){ jsonParseAddSubstNode(pParse, iTarget+j+1); jsonParseAddNodeArray(pParse, pNew, jsonNodeSize(pNew)); } pTarget = &pParse->aNode[iTarget]; } break; } } if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){ int iStart; JsonNode *pApnd; u32 nApnd; iStart = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); jsonParseAddNode(pParse, JSON_STRING, nKey, zKey); pApnd = &pPatch[i+1]; if( pApnd->eType==JSON_OBJECT ) jsonRemoveAllNulls(pApnd); nApnd = jsonNodeSize(pApnd); jsonParseAddNodeArray(pParse, pApnd, jsonNodeSize(pApnd)); if( pParse->oom ) return 0; pParse->aNode[iStart].n = 1+nApnd; pParse->aNode[iRoot].jnFlags |= JNODE_APPEND; pParse->aNode[iRoot].u.iAppend = iStart; VVA( pParse->aNode[iRoot].eU = 2 ); iRoot = iStart; pTarget = &pParse->aNode[iTarget]; } } return pTarget; } /* ** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON ** object that is the result of running the RFC 7396 MergePatch() algorithm ** on the two arguments. */ static void jsonPatchFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pX; /* The JSON that is being patched */ JsonParse *pY; /* The patch */ JsonNode *pResult; /* The result of the merge */ UNUSED_PARAMETER(argc); pX = jsonParseCached(ctx, argv[0], ctx, 1); if( pX==0 ) return; assert( pX->hasMod==0 ); pX->hasMod = 1; pY = jsonParseCached(ctx, argv[1], ctx, 1); if( pY==0 ) return; pX->useMod = 1; pY->useMod = 1; pResult = jsonMergePatch(pX, 0, pY->aNode); assert( pResult!=0 || pX->oom ); if( pResult && pX->oom==0 ){ jsonDebugPrintParse(pX); jsonDebugPrintNode(pResult); jsonReturnJson(pX, pResult, ctx, 0); }else{ sqlite3_result_error_nomem(ctx); } } /* ** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON ** object that contains all name/value given in arguments. Or if any name ** is not a string or if any value is a BLOB, throw an error. |
︙ | ︙ | |||
202003 202004 202005 202006 202007 202008 202009 | ** JSON or PATH arguments result in an error. */ static void jsonRemoveFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ | | | | | | > | > > | > | | > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > | | < < < < | < < < < | < | | | | > | | | < < < < | < < < | | | < > | | 203979 203980 203981 203982 203983 203984 203985 203986 203987 203988 203989 203990 203991 203992 203993 203994 203995 203996 203997 203998 203999 204000 204001 204002 204003 204004 204005 204006 204007 204008 204009 204010 204011 204012 204013 204014 204015 204016 204017 204018 204019 204020 204021 204022 204023 204024 204025 204026 204027 204028 204029 204030 204031 204032 204033 204034 204035 204036 204037 204038 204039 204040 204041 204042 204043 204044 204045 204046 204047 204048 204049 204050 204051 204052 204053 204054 204055 204056 204057 204058 204059 204060 204061 204062 204063 204064 204065 204066 204067 204068 204069 204070 204071 204072 204073 204074 204075 204076 204077 204078 204079 204080 204081 204082 204083 204084 204085 204086 204087 204088 204089 204090 204091 204092 204093 204094 204095 204096 204097 204098 204099 204100 204101 204102 204103 204104 204105 204106 204107 204108 204109 204110 204111 204112 204113 204114 204115 204116 204117 204118 204119 204120 204121 204122 204123 204124 204125 204126 204127 204128 204129 204130 204131 204132 204133 204134 204135 204136 204137 204138 204139 204140 204141 204142 204143 204144 204145 204146 204147 204148 204149 204150 204151 204152 204153 204154 204155 204156 204157 204158 204159 204160 204161 204162 204163 204164 204165 204166 204167 204168 204169 204170 204171 204172 204173 204174 204175 204176 204177 204178 204179 204180 204181 204182 204183 204184 204185 204186 204187 204188 204189 204190 204191 204192 204193 204194 204195 204196 204197 204198 204199 204200 204201 204202 204203 204204 204205 204206 204207 204208 204209 204210 204211 204212 204213 | ** JSON or PATH arguments result in an error. */ static void jsonRemoveFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pParse; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; if( argc<1 ) return; pParse = jsonParseCached(ctx, argv[0], ctx, argc>1); if( pParse==0 ) return; for(i=1; i<(u32)argc; i++){ zPath = (const char*)sqlite3_value_text(argv[i]); if( zPath==0 ) goto remove_done; pNode = jsonLookup(pParse, zPath, 0, ctx); if( pParse->nErr ) goto remove_done; if( pNode ){ pNode->jnFlags |= JNODE_REMOVE; pParse->hasMod = 1; pParse->useMod = 1; } } if( (pParse->aNode[0].jnFlags & JNODE_REMOVE)==0 ){ jsonReturnJson(pParse, pParse->aNode, ctx, 1); } remove_done: jsonDebugPrintParse(p); } /* ** Substitute the value at iNode with the pValue parameter. */ static void jsonReplaceNode( sqlite3_context *pCtx, JsonParse *p, int iNode, sqlite3_value *pValue ){ int idx = jsonParseAddSubstNode(p, iNode); if( idx<=0 ){ assert( p->oom ); return; } switch( sqlite3_value_type(pValue) ){ case SQLITE_NULL: { jsonParseAddNode(p, JSON_NULL, 0, 0); break; } case SQLITE_FLOAT: { char *z = sqlite3_mprintf("%!0.15g", sqlite3_value_double(pValue)); int n; if( z==0 ){ p->oom = 1; break; } n = sqlite3Strlen30(z); jsonParseAddNode(p, JSON_REAL, n, z); jsonParseAddCleanup(p, sqlite3_free, z); break; } case SQLITE_INTEGER: { char *z = sqlite3_mprintf("%lld", sqlite3_value_int64(pValue)); int n; if( z==0 ){ p->oom = 1; break; } n = sqlite3Strlen30(z); jsonParseAddNode(p, JSON_INT, n, z); jsonParseAddCleanup(p, sqlite3_free, z); break; } case SQLITE_TEXT: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); if( z==0 ){ p->oom = 1; break; } if( sqlite3_value_subtype(pValue)!=JSON_SUBTYPE ){ char *zCopy = sqlite3DbStrDup(0, z); int k; if( zCopy ){ jsonParseAddCleanup(p, sqlite3_free, zCopy); }else{ p->oom = 1; sqlite3_result_error_nomem(pCtx); } k = jsonParseAddNode(p, JSON_STRING, n, zCopy); assert( k>0 || p->oom ); if( p->oom==0 ) p->aNode[k].jnFlags |= JNODE_RAW; }else{ JsonParse *pPatch = jsonParseCached(pCtx, pValue, pCtx, 1); if( pPatch==0 ){ p->oom = 1; break; } jsonParseAddNodeArray(p, pPatch->aNode, pPatch->nNode); /* The nodes copied out of pPatch and into p likely contain ** u.zJContent pointers into pPatch->zJson. So preserve the ** content of pPatch until p is destroyed. */ assert( pPatch->nJPRef>=1 ); pPatch->nJPRef++; jsonParseAddCleanup(p, (void(*)(void*))jsonParseFree, pPatch); } break; } default: { jsonParseAddNode(p, JSON_NULL, 0, 0); sqlite3_result_error(pCtx, "JSON cannot hold BLOB values", -1); p->nErr++; break; } } } /* ** json_replace(JSON, PATH, VALUE, ...) ** ** Replace the value at PATH with VALUE. If PATH does not already exist, ** this routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonReplaceFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pParse; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, "replace"); return; } pParse = jsonParseCached(ctx, argv[0], ctx, argc>1); if( pParse==0 ) return; for(i=1; i<(u32)argc; i+=2){ zPath = (const char*)sqlite3_value_text(argv[i]); pParse->useMod = 1; pNode = jsonLookup(pParse, zPath, 0, ctx); if( pParse->nErr ) goto replace_err; if( pNode ){ jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]); } } jsonReturnJson(pParse, pParse->aNode, ctx, 1); replace_err: jsonDebugPrintParse(pParse); } /* ** json_set(JSON, PATH, VALUE, ...) ** ** Set the value at PATH to VALUE. Create the PATH if it does not already ** exist. Overwrite existing values that do exist. ** If JSON or PATH is malformed, throw an error. ** ** json_insert(JSON, PATH, VALUE, ...) ** ** Create PATH and initialize it to VALUE. If PATH already exists, this ** routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonSetFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *pParse; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; int bApnd; int bIsSet = sqlite3_user_data(ctx)!=0; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert"); return; } pParse = jsonParseCached(ctx, argv[0], ctx, argc>1); if( pParse==0 ) return; for(i=1; i<(u32)argc; i+=2){ zPath = (const char*)sqlite3_value_text(argv[i]); bApnd = 0; pParse->useMod = 1; pNode = jsonLookup(pParse, zPath, &bApnd, ctx); if( pParse->oom ){ sqlite3_result_error_nomem(ctx); goto jsonSetDone; }else if( pParse->nErr ){ goto jsonSetDone; }else if( pNode && (bApnd || bIsSet) ){ jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]); } } jsonDebugPrintParse(pParse); jsonReturnJson(pParse, pParse->aNode, ctx, 1); jsonSetDone: /* no cleanup required */; } /* ** json_type(JSON) ** json_type(JSON, PATH) ** ** Return the top-level "type" of a JSON string. json_type() raises an ** error if either the JSON or PATH inputs are not well-formed. */ static void jsonTypeFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ const char *zPath; JsonNode *pNode; p = jsonParseCached(ctx, argv[0], ctx, 0); if( p==0 ) return; if( argc==2 ){ zPath = (const char*)sqlite3_value_text(argv[1]); pNode = jsonLookup(p, zPath, 0, ctx); }else{ pNode = p->aNode; } |
︙ | ︙ | |||
202171 202172 202173 202174 202175 202176 202177 | static void jsonValidFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); | | > > > > > > | | | 204225 204226 204227 204228 204229 204230 204231 204232 204233 204234 204235 204236 204237 204238 204239 204240 204241 204242 204243 204244 204245 204246 204247 204248 204249 204250 204251 | static void jsonValidFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ #ifdef SQLITE_LEGACY_JSON_VALID /* Incorrect legacy behavior was to return FALSE for a NULL input */ sqlite3_result_int(ctx, 0); #endif return; } p = jsonParseCached(ctx, argv[0], 0, 0); if( p==0 || p->oom ){ sqlite3_result_error_nomem(ctx); sqlite3_free(p); }else{ sqlite3_result_int(ctx, p->nErr==0 && (p->hasNonstd==0 || p->useMod)); if( p->nErr ) jsonParseFree(p); } } /* ** json_error_position(JSON) ** |
︙ | ︙ | |||
202218 202219 202220 202221 202222 202223 202224 | sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | | | | 204278 204279 204280 204281 204282 204283 204284 204285 204286 204287 204288 204289 204290 204291 204292 204293 204294 204295 204296 204297 204298 204299 204300 204301 | sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; p = jsonParseCached(ctx, argv[0], 0, 0); if( p==0 || p->oom ){ sqlite3_result_error_nomem(ctx); sqlite3_free(p); }else if( p->nErr==0 ){ sqlite3_result_int(ctx, 0); }else{ int n = 1; u32 i; const char *z = (const char*)sqlite3_value_text(argv[0]); for(i=0; i<p->iErr && ALWAYS(z[i]); i++){ if( (z[i]&0xc0)!=0x80 ) n++; } sqlite3_result_int(ctx, n); jsonParseFree(p); } } |
︙ | ︙ | |||
202275 202276 202277 202278 202279 202280 202281 | pStr->pCtx = ctx; jsonAppendChar(pStr, ']'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, | | > | 204335 204336 204337 204338 204339 204340 204341 204342 204343 204344 204345 204346 204347 204348 204349 204350 | pStr->pCtx = ctx; jsonAppendChar(pStr, ']'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : (void(*)(void*))sqlite3RCStrUnref); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); pStr->nUsed--; } }else{ sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC); |
︙ | ︙ | |||
202316 202317 202318 202319 202320 202321 202322 | char c; JsonString *pStr; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); #ifdef NEVER /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will | | | 204377 204378 204379 204380 204381 204382 204383 204384 204385 204386 204387 204388 204389 204390 204391 | char c; JsonString *pStr; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); #ifdef NEVER /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will ** always have been called to initialize it */ if( NEVER(!pStr) ) return; #endif z = pStr->zBuf; for(i=1; i<pStr->nUsed && ((c = z[i])!=',' || inStr || nNest); i++){ if( c=='"' ){ inStr = !inStr; }else if( c=='\\' ){ |
︙ | ︙ | |||
202383 202384 202385 202386 202387 202388 202389 | if( pStr ){ jsonAppendChar(pStr, '}'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, | | > | 204444 204445 204446 204447 204448 204449 204450 204451 204452 204453 204454 204455 204456 204457 204458 204459 | if( pStr ){ jsonAppendChar(pStr, '}'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : (void(*)(void*))sqlite3RCStrUnref); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); pStr->nUsed--; } }else{ sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC); |
︙ | ︙ | |||
202494 202495 202496 202497 202498 202499 202500 | } return rc; } /* Reset a JsonEachCursor back to its original state. Free any memory ** held. */ static void jsonEachCursorReset(JsonEachCursor *p){ | < | 204556 204557 204558 204559 204560 204561 204562 204563 204564 204565 204566 204567 204568 204569 | } return rc; } /* Reset a JsonEachCursor back to its original state. Free any memory ** held. */ static void jsonEachCursorReset(JsonEachCursor *p){ sqlite3_free(p->zRoot); jsonParseReset(&p->sParse); p->iRowid = 0; p->i = 0; p->iEnd = 0; p->eType = 0; p->zJson = 0; |
︙ | ︙ | |||
202632 202633 202634 202635 202636 202637 202638 | ){ JsonEachCursor *p = (JsonEachCursor*)cur; JsonNode *pThis = &p->sParse.aNode[p->i]; switch( i ){ case JEACH_KEY: { if( p->i==0 ) break; if( p->eType==JSON_OBJECT ){ | | | | | 204693 204694 204695 204696 204697 204698 204699 204700 204701 204702 204703 204704 204705 204706 204707 204708 204709 204710 204711 204712 204713 204714 204715 204716 204717 204718 204719 204720 204721 204722 204723 204724 204725 204726 204727 204728 204729 204730 204731 204732 204733 204734 | ){ JsonEachCursor *p = (JsonEachCursor*)cur; JsonNode *pThis = &p->sParse.aNode[p->i]; switch( i ){ case JEACH_KEY: { if( p->i==0 ) break; if( p->eType==JSON_OBJECT ){ jsonReturn(&p->sParse, pThis, ctx); }else if( p->eType==JSON_ARRAY ){ u32 iKey; if( p->bRecursive ){ if( p->iRowid==0 ) break; assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 ); iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey; }else{ iKey = p->iRowid; } sqlite3_result_int64(ctx, (sqlite3_int64)iKey); } break; } case JEACH_VALUE: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; jsonReturn(&p->sParse, pThis, ctx); break; } case JEACH_TYPE: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC); break; } case JEACH_ATOM: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; if( pThis->eType>=JSON_ARRAY ) break; jsonReturn(&p->sParse, pThis, ctx); break; } case JEACH_ID: { sqlite3_result_int64(ctx, (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0)); break; } |
︙ | ︙ | |||
202814 202815 202816 202817 202818 202819 202820 | UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(argc); jsonEachCursorReset(p); if( idxNum==0 ) return SQLITE_OK; z = (const char*)sqlite3_value_text(argv[0]); if( z==0 ) return SQLITE_OK; | > > > > > | | | | > > > | | 204875 204876 204877 204878 204879 204880 204881 204882 204883 204884 204885 204886 204887 204888 204889 204890 204891 204892 204893 204894 204895 204896 204897 204898 204899 204900 204901 | UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(argc); jsonEachCursorReset(p); if( idxNum==0 ) return SQLITE_OK; z = (const char*)sqlite3_value_text(argv[0]); if( z==0 ) return SQLITE_OK; memset(&p->sParse, 0, sizeof(p->sParse)); p->sParse.nJPRef = 1; if( sqlite3ValueIsOfClass(argv[0], (void(*)(void*))sqlite3RCStrUnref) ){ p->sParse.zJson = sqlite3RCStrRef((char*)z); }else{ n = sqlite3_value_bytes(argv[0]); p->sParse.zJson = sqlite3RCStrNew( n+1 ); if( p->sParse.zJson==0 ) return SQLITE_NOMEM; memcpy(p->sParse.zJson, z, (size_t)n+1); } p->sParse.bJsonIsRCStr = 1; p->zJson = p->sParse.zJson; if( jsonParse(&p->sParse, 0) ){ int rc = SQLITE_NOMEM; if( p->sParse.oom==0 ){ sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON"); if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR; } jsonEachCursorReset(p); |
︙ | ︙ | |||
203095 203096 203097 203098 203099 203100 203101 203102 203103 203104 203105 203106 203107 203108 | # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif #endif /* !defined(SQLITE_AMALGAMATION) */ /* #include <string.h> */ /* #include <stdio.h> */ /* #include <assert.h> */ /* #include <stdlib.h> */ /* The following macro is used to suppress compiler warnings. | > > > > > | 205164 205165 205166 205167 205168 205169 205170 205171 205172 205173 205174 205175 205176 205177 205178 205179 205180 205181 205182 | # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif #endif /* !defined(SQLITE_AMALGAMATION) */ /* Macro to check for 4-byte alignment. Only used inside of assert() */ #ifdef SQLITE_DEBUG # define FOUR_BYTE_ALIGNED(X) ((((char*)(X) - (char*)0) & 3)==0) #endif /* #include <string.h> */ /* #include <stdio.h> */ /* #include <assert.h> */ /* #include <stdlib.h> */ /* The following macro is used to suppress compiler warnings. |
︙ | ︙ | |||
203502 203503 203504 203505 203506 203507 203508 | ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ | | | 205576 205577 205578 205579 205580 205581 205582 205583 205584 205585 205586 205587 205588 205589 205590 | ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ assert( FOUR_BYTE_ALIGNED(p) ); #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 pCoord->u = _byteswap_ulong(*(u32*)p); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 pCoord->u = __builtin_bswap32(*(u32*)p); #elif SQLITE_BYTEORDER==4321 pCoord->u = *(u32*)p; #else |
︙ | ︙ | |||
203556 203557 203558 203559 203560 203561 203562 | */ static void writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; | | | 205630 205631 205632 205633 205634 205635 205636 205637 205638 205639 205640 205641 205642 205643 205644 | */ static void writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; assert( FOUR_BYTE_ALIGNED(p) ); assert( sizeof(RtreeCoord)==4 ); assert( sizeof(u32)==4 ); #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = __builtin_bswap32(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = _byteswap_ulong(pCoord->u); |
︙ | ︙ | |||
204284 204285 204286 204287 204288 204289 204290 | ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); | | | 206358 206359 206360 206361 206362 206363 206364 206365 206366 206367 206368 206369 206370 206371 206372 | ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); assert( FOUR_BYTE_ALIGNED(pCellData) ); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_EQ: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ){ |
︙ | ︙ | |||
204337 204338 204339 204340 204341 204342 204343 | ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); pCellData += 8 + p->iCoord*4; | | | 206411 206412 206413 206414 206415 206416 206417 206418 206419 206420 206421 206422 206423 206424 206425 | ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); pCellData += 8 + p->iCoord*4; assert( FOUR_BYTE_ALIGNED(pCellData) ); RTREE_DECODE_COORD(eInt, pCellData, xN); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_LE: if( xN <= p->u.rValue ) return; break; case RTREE_LT: if( xN < p->u.rValue ) return; break; case RTREE_GE: if( xN >= p->u.rValue ) return; break; |
︙ | ︙ | |||
204907 204908 204909 204910 204911 204912 204913 | rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } p->pInfo->nCoord = pRtree->nDim2; p->pInfo->anQueue = pCsr->anQueue; p->pInfo->mxLevel = pRtree->iDepth + 1; | | > > > > > > > > > > > > > | 206981 206982 206983 206984 206985 206986 206987 206988 206989 206990 206991 206992 206993 206994 206995 206996 206997 206998 206999 207000 207001 207002 207003 207004 207005 207006 207007 207008 | rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } p->pInfo->nCoord = pRtree->nDim2; p->pInfo->anQueue = pCsr->anQueue; p->pInfo->mxLevel = pRtree->iDepth + 1; }else if( eType==SQLITE_INTEGER ){ sqlite3_int64 iVal = sqlite3_value_int64(argv[ii]); #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = iVal; #else p->u.rValue = (double)iVal; if( iVal>=((sqlite3_int64)1)<<48 || -iVal>=((sqlite3_int64)1)<<48 ){ if( p->op==RTREE_LT ) p->op = RTREE_LE; if( p->op==RTREE_GT ) p->op = RTREE_GE; } #endif }else if( eType==SQLITE_FLOAT ){ #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = sqlite3_value_int64(argv[ii]); #else p->u.rValue = sqlite3_value_double(argv[ii]); #endif }else{ p->u.rValue = RTREE_ZERO; |
︙ | ︙ | |||
205038 205039 205040 205041 205042 205043 205044 205045 | } if( p->usable && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; switch( p->op ){ | > | | | | | 207125 207126 207127 207128 207129 207130 207131 207132 207133 207134 207135 207136 207137 207138 207139 207140 207141 207142 207143 207144 207145 207146 207147 207148 207149 207150 207151 207152 207153 | } if( p->usable && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; u8 doOmit = 1; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; default: op = 0; break; } if( op ){ zIdxStr[iIdx++] = op; zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = doOmit; } } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
︙ | ︙ | |||
214041 214042 214043 214044 214045 214046 214047 | ** successful, or an SQLite error code otherwise. */ static int rbuLockDatabase(sqlite3 *db){ int rc = SQLITE_OK; sqlite3_file *fd = 0; sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd); | | > > > > > > > | | 216129 216130 216131 216132 216133 216134 216135 216136 216137 216138 216139 216140 216141 216142 216143 216144 216145 216146 216147 216148 216149 216150 216151 216152 216153 216154 | ** successful, or an SQLite error code otherwise. */ static int rbuLockDatabase(sqlite3 *db){ int rc = SQLITE_OK; sqlite3_file *fd = 0; sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd); if( fd ){ sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd); rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED); if( rc==SQLITE_OK ){ rc = fd->pMethods->xUnlock(fd, SQLITE_LOCK_NONE); } sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd); }else{ sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd); } if( rc==SQLITE_OK && fd->pMethods ){ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED); if( rc==SQLITE_OK ){ rc = fd->pMethods->xLock(fd, SQLITE_LOCK_EXCLUSIVE); } } return rc; } |
︙ | ︙ | |||
218532 218533 218534 218535 218536 218537 218538 218539 218540 218541 218542 218543 218544 218545 | /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); }else{ /* assert( db->pPreUpdate->pUnpacked ); */ rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); } assert( rc==SQLITE_OK ); if( sqlite3_value_type(pVal)!=eType ) return 0; /* A SessionChange object never has a NULL value in a PK column */ assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT || eType==SQLITE_BLOB || eType==SQLITE_TEXT ); | > | 220627 220628 220629 220630 220631 220632 220633 220634 220635 220636 220637 220638 220639 220640 220641 | /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); }else{ /* assert( db->pPreUpdate->pUnpacked ); */ rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); } assert( rc==SQLITE_OK ); (void)rc; /* Suppress warning about unused variable */ if( sqlite3_value_type(pVal)!=eType ) return 0; /* A SessionChange object never has a NULL value in a PK column */ assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT || eType==SQLITE_BLOB || eType==SQLITE_TEXT ); |
︙ | ︙ | |||
223947 223948 223949 223950 223951 223952 223953 | ** significantly more efficient than those alternatives when used with ** "detail=column" tables. ** ** xPhraseNextColumn() ** See xPhraseFirstColumn above. */ struct Fts5ExtensionApi { | | | 226043 226044 226045 226046 226047 226048 226049 226050 226051 226052 226053 226054 226055 226056 226057 | ** significantly more efficient than those alternatives when used with ** "detail=column" tables. ** ** xPhraseNextColumn() ** See xPhraseFirstColumn above. */ struct Fts5ExtensionApi { int iVersion; /* Currently always set to 2 */ void *(*xUserData)(Fts5Context*); int (*xColumnCount)(Fts5Context*); int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow); int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken); |
︙ | ︙ | |||
224176 224177 224178 224179 224180 224181 224182 | ** provide synonyms for prefixes). However, a non-prefix query like '1st' ** will match against "1st" and "first". This method does not require ** extra disk space, as no extra entries are added to the FTS index. ** On the other hand, it may require more CPU cycles to run MATCH queries, ** as separate queries of the FTS index are required for each synonym. ** ** When using methods (2) or (3), it is important that the tokenizer only | | | | 226272 226273 226274 226275 226276 226277 226278 226279 226280 226281 226282 226283 226284 226285 226286 226287 | ** provide synonyms for prefixes). However, a non-prefix query like '1st' ** will match against "1st" and "first". This method does not require ** extra disk space, as no extra entries are added to the FTS index. ** On the other hand, it may require more CPU cycles to run MATCH queries, ** as separate queries of the FTS index are required for each synonym. ** ** When using methods (2) or (3), it is important that the tokenizer only ** provide synonyms when tokenizing document text (method (3)) or query ** text (method (2)), not both. Doing so will not cause any errors, but is ** inefficient. */ typedef struct Fts5Tokenizer Fts5Tokenizer; typedef struct fts5_tokenizer fts5_tokenizer; struct fts5_tokenizer { int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut); void (*xDelete)(Fts5Tokenizer*); |
︙ | ︙ | |||
224225 224226 224227 224228 224229 224230 224231 | struct fts5_api { int iVersion; /* Currently always set to 2 */ /* Create a new tokenizer */ int (*xCreateTokenizer)( fts5_api *pApi, const char *zName, | | | | | 226321 226322 226323 226324 226325 226326 226327 226328 226329 226330 226331 226332 226333 226334 226335 226336 226337 226338 226339 226340 226341 226342 226343 226344 226345 226346 226347 226348 226349 226350 226351 226352 | struct fts5_api { int iVersion; /* Currently always set to 2 */ /* Create a new tokenizer */ int (*xCreateTokenizer)( fts5_api *pApi, const char *zName, void *pUserData, fts5_tokenizer *pTokenizer, void (*xDestroy)(void*) ); /* Find an existing tokenizer */ int (*xFindTokenizer)( fts5_api *pApi, const char *zName, void **ppUserData, fts5_tokenizer *pTokenizer ); /* Create a new auxiliary function */ int (*xCreateFunction)( fts5_api *pApi, const char *zName, void *pUserData, fts5_extension_function xFunction, void (*xDestroy)(void*) ); }; /* ** END OF REGISTRATION API |
︙ | ︙ | |||
224414 224415 224416 224417 224418 224419 224420 224421 224422 224423 224424 224425 224426 224427 | ** And all information loaded from the %_config table. ** ** nAutomerge: ** The minimum number of segments that an auto-merge operation should ** attempt to merge together. A value of 1 sets the object to use the ** compile time default. Zero disables auto-merge altogether. ** ** zContent: ** ** zContentRowid: ** The value of the content_rowid= option, if one was specified. Or ** the string "rowid" otherwise. This text is not quoted - if it is ** used as part of an SQL statement it needs to be quoted appropriately. ** | > > > > | 226510 226511 226512 226513 226514 226515 226516 226517 226518 226519 226520 226521 226522 226523 226524 226525 226526 226527 | ** And all information loaded from the %_config table. ** ** nAutomerge: ** The minimum number of segments that an auto-merge operation should ** attempt to merge together. A value of 1 sets the object to use the ** compile time default. Zero disables auto-merge altogether. ** ** bContentlessDelete: ** True if the contentless_delete option was present in the CREATE ** VIRTUAL TABLE statement. ** ** zContent: ** ** zContentRowid: ** The value of the content_rowid= option, if one was specified. Or ** the string "rowid" otherwise. This text is not quoted - if it is ** used as part of an SQL statement it needs to be quoted appropriately. ** |
︙ | ︙ | |||
224448 224449 224450 224451 224452 224453 224454 224455 224456 224457 224458 224459 224460 224461 | char *zName; /* Name of FTS index */ int nCol; /* Number of columns */ char **azCol; /* Column names */ u8 *abUnindexed; /* True for unindexed columns */ int nPrefix; /* Number of prefix indexes */ int *aPrefix; /* Sizes in bytes of nPrefix prefix indexes */ int eContent; /* An FTS5_CONTENT value */ char *zContent; /* content table */ char *zContentRowid; /* "content_rowid=" option value */ int bColumnsize; /* "columnsize=" option value (dflt==1) */ int eDetail; /* FTS5_DETAIL_XXX value */ char *zContentExprlist; Fts5Tokenizer *pTok; fts5_tokenizer *pTokApi; | > | 226548 226549 226550 226551 226552 226553 226554 226555 226556 226557 226558 226559 226560 226561 226562 | char *zName; /* Name of FTS index */ int nCol; /* Number of columns */ char **azCol; /* Column names */ u8 *abUnindexed; /* True for unindexed columns */ int nPrefix; /* Number of prefix indexes */ int *aPrefix; /* Sizes in bytes of nPrefix prefix indexes */ int eContent; /* An FTS5_CONTENT value */ int bContentlessDelete; /* "contentless_delete=" option (dflt==0) */ char *zContent; /* content table */ char *zContentRowid; /* "content_rowid=" option value */ int bColumnsize; /* "columnsize=" option value (dflt==1) */ int eDetail; /* FTS5_DETAIL_XXX value */ char *zContentExprlist; Fts5Tokenizer *pTok; fts5_tokenizer *pTokApi; |
︙ | ︙ | |||
224469 224470 224471 224472 224473 224474 224475 224476 224477 224478 224479 224480 224481 224482 | int nAutomerge; /* 'automerge' setting */ int nCrisisMerge; /* Maximum allowed segments per level */ int nUsermerge; /* 'usermerge' setting */ int nHashSize; /* Bytes of memory for in-memory hash */ char *zRank; /* Name of rank function */ char *zRankArgs; /* Arguments to rank function */ int bSecureDelete; /* 'secure-delete' */ /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */ char **pzErrmsg; #ifdef SQLITE_DEBUG int bPrefixIndex; /* True to use prefix-indexes */ #endif | > | 226570 226571 226572 226573 226574 226575 226576 226577 226578 226579 226580 226581 226582 226583 226584 | int nAutomerge; /* 'automerge' setting */ int nCrisisMerge; /* Maximum allowed segments per level */ int nUsermerge; /* 'usermerge' setting */ int nHashSize; /* Bytes of memory for in-memory hash */ char *zRank; /* Name of rank function */ char *zRankArgs; /* Arguments to rank function */ int bSecureDelete; /* 'secure-delete' */ int nDeleteMerge; /* 'deletemerge' */ /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */ char **pzErrmsg; #ifdef SQLITE_DEBUG int bPrefixIndex; /* True to use prefix-indexes */ #endif |
︙ | ︙ | |||
224791 224792 224793 224794 224795 224796 224797 224798 224799 224800 224801 224802 224803 224804 | static int sqlite3Fts5IndexReinit(Fts5Index *p); static int sqlite3Fts5IndexOptimize(Fts5Index *p); static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge); static int sqlite3Fts5IndexReset(Fts5Index *p); static int sqlite3Fts5IndexLoadConfig(Fts5Index *p); /* ** End of interface to code in fts5_index.c. **************************************************************************/ /************************************************************************** ** Interface to code in fts5_varint.c. */ | > > > | 226893 226894 226895 226896 226897 226898 226899 226900 226901 226902 226903 226904 226905 226906 226907 226908 226909 | static int sqlite3Fts5IndexReinit(Fts5Index *p); static int sqlite3Fts5IndexOptimize(Fts5Index *p); static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge); static int sqlite3Fts5IndexReset(Fts5Index *p); static int sqlite3Fts5IndexLoadConfig(Fts5Index *p); static int sqlite3Fts5IndexGetOrigin(Fts5Index *p, i64 *piOrigin); static int sqlite3Fts5IndexContentlessDelete(Fts5Index *p, i64 iOrigin, i64 iRowid); /* ** End of interface to code in fts5_index.c. **************************************************************************/ /************************************************************************** ** Interface to code in fts5_varint.c. */ |
︙ | ︙ | |||
224875 224876 224877 224878 224879 224880 224881 224882 224883 224884 224885 224886 224887 224888 224889 224890 224891 224892 224893 224894 224895 224896 224897 224898 224899 224900 224901 224902 224903 224904 224905 224906 224907 | ); /* ** Empty (but do not delete) a hash table. */ static void sqlite3Fts5HashClear(Fts5Hash*); static int sqlite3Fts5HashQuery( Fts5Hash*, /* Hash table to query */ int nPre, const char *pTerm, int nTerm, /* Query term */ void **ppObj, /* OUT: Pointer to doclist for pTerm */ int *pnDoclist /* OUT: Size of doclist in bytes */ ); static int sqlite3Fts5HashScanInit( Fts5Hash*, /* Hash table to query */ const char *pTerm, int nTerm /* Query prefix */ ); static void sqlite3Fts5HashScanNext(Fts5Hash*); static int sqlite3Fts5HashScanEof(Fts5Hash*); static void sqlite3Fts5HashScanEntry(Fts5Hash *, const char **pzTerm, /* OUT: term (nul-terminated) */ const u8 **ppDoclist, /* OUT: pointer to doclist */ int *pnDoclist /* OUT: size of doclist in bytes */ ); /* ** End of interface to code in fts5_hash.c. **************************************************************************/ /************************************************************************** | > > > > > > | 226980 226981 226982 226983 226984 226985 226986 226987 226988 226989 226990 226991 226992 226993 226994 226995 226996 226997 226998 226999 227000 227001 227002 227003 227004 227005 227006 227007 227008 227009 227010 227011 227012 227013 227014 227015 227016 227017 227018 | ); /* ** Empty (but do not delete) a hash table. */ static void sqlite3Fts5HashClear(Fts5Hash*); /* ** Return true if the hash is empty, false otherwise. */ static int sqlite3Fts5HashIsEmpty(Fts5Hash*); static int sqlite3Fts5HashQuery( Fts5Hash*, /* Hash table to query */ int nPre, const char *pTerm, int nTerm, /* Query term */ void **ppObj, /* OUT: Pointer to doclist for pTerm */ int *pnDoclist /* OUT: Size of doclist in bytes */ ); static int sqlite3Fts5HashScanInit( Fts5Hash*, /* Hash table to query */ const char *pTerm, int nTerm /* Query prefix */ ); static void sqlite3Fts5HashScanNext(Fts5Hash*); static int sqlite3Fts5HashScanEof(Fts5Hash*); static void sqlite3Fts5HashScanEntry(Fts5Hash *, const char **pzTerm, /* OUT: term (nul-terminated) */ const u8 **ppDoclist, /* OUT: pointer to doclist */ int *pnDoclist /* OUT: size of doclist in bytes */ ); /* ** End of interface to code in fts5_hash.c. **************************************************************************/ /************************************************************************** |
︙ | ︙ | |||
225139 225140 225141 225142 225143 225144 225145 | #define FTS5_RP 11 #define FTS5_CARET 12 #define FTS5_COMMA 13 #define FTS5_PLUS 14 #define FTS5_STAR 15 /* This file is automatically generated by Lemon from input grammar | | > | 227250 227251 227252 227253 227254 227255 227256 227257 227258 227259 227260 227261 227262 227263 227264 227265 | #define FTS5_RP 11 #define FTS5_CARET 12 #define FTS5_COMMA 13 #define FTS5_PLUS 14 #define FTS5_STAR 15 /* This file is automatically generated by Lemon from input grammar ** source file "fts5parse.y". */ /* ** 2000-05-29 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. |
︙ | ︙ | |||
227767 227768 227769 227770 227771 227772 227773 227774 227775 227776 227777 227778 227779 227780 | #define FTS5_DEFAULT_PAGE_SIZE 4050 #define FTS5_DEFAULT_AUTOMERGE 4 #define FTS5_DEFAULT_USERMERGE 4 #define FTS5_DEFAULT_CRISISMERGE 16 #define FTS5_DEFAULT_HASHSIZE (1024*1024) /* Maximum allowed page size */ #define FTS5_MAX_PAGE_SIZE (64*1024) static int fts5_iswhitespace(char x){ return (x==' '); } | > > | 229879 229880 229881 229882 229883 229884 229885 229886 229887 229888 229889 229890 229891 229892 229893 229894 | #define FTS5_DEFAULT_PAGE_SIZE 4050 #define FTS5_DEFAULT_AUTOMERGE 4 #define FTS5_DEFAULT_USERMERGE 4 #define FTS5_DEFAULT_CRISISMERGE 16 #define FTS5_DEFAULT_HASHSIZE (1024*1024) #define FTS5_DEFAULT_DELETE_AUTOMERGE 10 /* default 10% */ /* Maximum allowed page size */ #define FTS5_MAX_PAGE_SIZE (64*1024) static int fts5_iswhitespace(char x){ return (x==' '); } |
︙ | ︙ | |||
228096 228097 228098 228099 228100 228101 228102 228103 228104 228105 228106 228107 228108 228109 | pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg); }else{ pConfig->eContent = FTS5_CONTENT_NONE; } } return rc; } if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){ if( pConfig->zContentRowid ){ *pzErr = sqlite3_mprintf("multiple content_rowid=... directives"); rc = SQLITE_ERROR; }else{ pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1); | > > > > > > > > > > | 230210 230211 230212 230213 230214 230215 230216 230217 230218 230219 230220 230221 230222 230223 230224 230225 230226 230227 230228 230229 230230 230231 230232 230233 | pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg); }else{ pConfig->eContent = FTS5_CONTENT_NONE; } } return rc; } if( sqlite3_strnicmp("contentless_delete", zCmd, nCmd)==0 ){ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1]!='\0' ){ *pzErr = sqlite3_mprintf("malformed contentless_delete=... directive"); rc = SQLITE_ERROR; }else{ pConfig->bContentlessDelete = (zArg[0]=='1'); } return rc; } if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){ if( pConfig->zContentRowid ){ *pzErr = sqlite3_mprintf("multiple content_rowid=... directives"); rc = SQLITE_ERROR; }else{ pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1); |
︙ | ︙ | |||
228340 228341 228342 228343 228344 228345 228346 228347 228348 228349 228350 228351 228352 228353 | } } } sqlite3_free(zOne); sqlite3_free(zTwo); } /* If a tokenizer= option was successfully parsed, the tokenizer has ** already been allocated. Otherwise, allocate an instance of the default ** tokenizer (unicode61) now. */ if( rc==SQLITE_OK && pRet->pTok==0 ){ rc = fts5ConfigDefaultTokenizer(pGlobal, pRet); } | > > > > > > > > > > > > > > > > > > > > > > | 230464 230465 230466 230467 230468 230469 230470 230471 230472 230473 230474 230475 230476 230477 230478 230479 230480 230481 230482 230483 230484 230485 230486 230487 230488 230489 230490 230491 230492 230493 230494 230495 230496 230497 230498 230499 | } } } sqlite3_free(zOne); sqlite3_free(zTwo); } /* We only allow contentless_delete=1 if the table is indeed contentless. */ if( rc==SQLITE_OK && pRet->bContentlessDelete && pRet->eContent!=FTS5_CONTENT_NONE ){ *pzErr = sqlite3_mprintf( "contentless_delete=1 requires a contentless table" ); rc = SQLITE_ERROR; } /* We only allow contentless_delete=1 if columnsize=0 is not present. ** ** This restriction may be removed at some point. */ if( rc==SQLITE_OK && pRet->bContentlessDelete && pRet->bColumnsize==0 ){ *pzErr = sqlite3_mprintf( "contentless_delete=1 is incompatible with columnsize=0" ); rc = SQLITE_ERROR; } /* If a tokenizer= option was successfully parsed, the tokenizer has ** already been allocated. Otherwise, allocate an instance of the default ** tokenizer (unicode61) now. */ if( rc==SQLITE_OK && pRet->pTok==0 ){ rc = fts5ConfigDefaultTokenizer(pGlobal, pRet); } |
︙ | ︙ | |||
228634 228635 228636 228637 228638 228639 228640 228641 228642 228643 228644 228645 228646 228647 | *pbBadkey = 1; }else{ if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE; if( nCrisisMerge>=FTS5_MAX_SEGMENT ) nCrisisMerge = FTS5_MAX_SEGMENT-1; pConfig->nCrisisMerge = nCrisisMerge; } } else if( 0==sqlite3_stricmp(zKey, "rank") ){ const char *zIn = (const char*)sqlite3_value_text(pVal); char *zRank; char *zRankArgs; rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs); if( rc==SQLITE_OK ){ | > > > > > > > > > > > > | 230780 230781 230782 230783 230784 230785 230786 230787 230788 230789 230790 230791 230792 230793 230794 230795 230796 230797 230798 230799 230800 230801 230802 230803 230804 230805 | *pbBadkey = 1; }else{ if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE; if( nCrisisMerge>=FTS5_MAX_SEGMENT ) nCrisisMerge = FTS5_MAX_SEGMENT-1; pConfig->nCrisisMerge = nCrisisMerge; } } else if( 0==sqlite3_stricmp(zKey, "deletemerge") ){ int nVal = -1; if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){ nVal = sqlite3_value_int(pVal); }else{ *pbBadkey = 1; } if( nVal<0 ) nVal = FTS5_DEFAULT_DELETE_AUTOMERGE; if( nVal>100 ) nVal = 0; pConfig->nDeleteMerge = nVal; } else if( 0==sqlite3_stricmp(zKey, "rank") ){ const char *zIn = (const char*)sqlite3_value_text(pVal); char *zRank; char *zRankArgs; rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
228683 228684 228685 228686 228687 228688 228689 228690 228691 228692 228693 228694 228695 228696 | /* Set default values */ pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE; pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE; pConfig->nUsermerge = FTS5_DEFAULT_USERMERGE; pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE; pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE; zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName); if( zSql ){ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0); sqlite3_free(zSql); } | > | 230841 230842 230843 230844 230845 230846 230847 230848 230849 230850 230851 230852 230853 230854 230855 | /* Set default values */ pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE; pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE; pConfig->nUsermerge = FTS5_DEFAULT_USERMERGE; pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE; pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE; pConfig->nDeleteMerge = FTS5_DEFAULT_DELETE_AUTOMERGE; zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName); if( zSql ){ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0); sqlite3_free(zSql); } |
︙ | ︙ | |||
228746 228747 228748 228749 228750 228751 228752 228753 228754 228755 228756 228757 228758 228759 | */ /* #include "fts5Int.h" */ /* #include "fts5parse.h" */ /* ** All token types in the generated fts5parse.h file are greater than 0. */ #define FTS5_EOF 0 #define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) | > > > > | 230905 230906 230907 230908 230909 230910 230911 230912 230913 230914 230915 230916 230917 230918 230919 230920 230921 230922 | */ /* #include "fts5Int.h" */ /* #include "fts5parse.h" */ #ifndef SQLITE_FTS5_MAX_EXPR_DEPTH # define SQLITE_FTS5_MAX_EXPR_DEPTH 256 #endif /* ** All token types in the generated fts5parse.h file are greater than 0. */ #define FTS5_EOF 0 #define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) |
︙ | ︙ | |||
228786 228787 228788 228789 228790 228791 228792 228793 228794 228795 228796 228797 228798 228799 228800 228801 228802 228803 228804 | ** Expression node type. Always one of: ** ** FTS5_AND (nChild, apChild valid) ** FTS5_OR (nChild, apChild valid) ** FTS5_NOT (nChild, apChild valid) ** FTS5_STRING (pNear valid) ** FTS5_TERM (pNear valid) */ struct Fts5ExprNode { int eType; /* Node type */ int bEof; /* True at EOF */ int bNomatch; /* True if entry is not a match */ /* Next method for this node. */ int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64); i64 iRowid; /* Current rowid */ Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */ | > > > > > > | 230949 230950 230951 230952 230953 230954 230955 230956 230957 230958 230959 230960 230961 230962 230963 230964 230965 230966 230967 230968 230969 230970 230971 230972 230973 | ** Expression node type. Always one of: ** ** FTS5_AND (nChild, apChild valid) ** FTS5_OR (nChild, apChild valid) ** FTS5_NOT (nChild, apChild valid) ** FTS5_STRING (pNear valid) ** FTS5_TERM (pNear valid) ** ** iHeight: ** Distance from this node to furthest leaf. This is always 0 for nodes ** of type FTS5_STRING and FTS5_TERM. For all other nodes it is one ** greater than the largest child value. */ struct Fts5ExprNode { int eType; /* Node type */ int bEof; /* True at EOF */ int bNomatch; /* True if entry is not a match */ int iHeight; /* Distance to tree leaf nodes */ /* Next method for this node. */ int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64); i64 iRowid; /* Current rowid */ Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */ |
︙ | ︙ | |||
228860 228861 228862 228863 228864 228865 228866 228867 228868 228869 228870 228871 228872 228873 | int rc; int nPhrase; /* Size of apPhrase array */ Fts5ExprPhrase **apPhrase; /* Array of all phrases */ Fts5ExprNode *pExpr; /* Result of a successful parse */ int bPhraseToAnd; /* Convert "a+b" to "a AND b" */ }; static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); if( pParse->rc==SQLITE_OK ){ assert( pParse->zErr==0 ); pParse->zErr = sqlite3_vmprintf(zFmt, ap); pParse->rc = SQLITE_ERROR; | > > > > > > > > > > > > > > > > > > > > > > > > > | 231029 231030 231031 231032 231033 231034 231035 231036 231037 231038 231039 231040 231041 231042 231043 231044 231045 231046 231047 231048 231049 231050 231051 231052 231053 231054 231055 231056 231057 231058 231059 231060 231061 231062 231063 231064 231065 231066 231067 | int rc; int nPhrase; /* Size of apPhrase array */ Fts5ExprPhrase **apPhrase; /* Array of all phrases */ Fts5ExprNode *pExpr; /* Result of a successful parse */ int bPhraseToAnd; /* Convert "a+b" to "a AND b" */ }; /* ** Check that the Fts5ExprNode.iHeight variables are set correctly in ** the expression tree passed as the only argument. */ #ifndef NDEBUG static void assert_expr_depth_ok(int rc, Fts5ExprNode *p){ if( rc==SQLITE_OK ){ if( p->eType==FTS5_TERM || p->eType==FTS5_STRING || p->eType==0 ){ assert( p->iHeight==0 ); }else{ int ii; int iMaxChild = 0; for(ii=0; ii<p->nChild; ii++){ Fts5ExprNode *pChild = p->apChild[ii]; iMaxChild = MAX(iMaxChild, pChild->iHeight); assert_expr_depth_ok(SQLITE_OK, pChild); } assert( p->iHeight==iMaxChild+1 ); } } } #else # define assert_expr_depth_ok(rc, p) #endif static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); if( pParse->rc==SQLITE_OK ){ assert( pParse->zErr==0 ); pParse->zErr = sqlite3_vmprintf(zFmt, ap); pParse->rc = SQLITE_ERROR; |
︙ | ︙ | |||
228973 228974 228975 228976 228977 228978 228979 228980 228981 228982 228983 228984 228985 228986 | sParse.pConfig = pConfig; do { t = fts5ExprGetToken(&sParse, &z, &token); sqlite3Fts5Parser(pEngine, t, token, &sParse); }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF ); sqlite3Fts5ParserFree(pEngine, fts5ParseFree); /* If the LHS of the MATCH expression was a user column, apply the ** implicit column-filter. */ if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){ int n = sizeof(Fts5Colset); Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n); if( pColset ){ | > > | 231167 231168 231169 231170 231171 231172 231173 231174 231175 231176 231177 231178 231179 231180 231181 231182 | sParse.pConfig = pConfig; do { t = fts5ExprGetToken(&sParse, &z, &token); sqlite3Fts5Parser(pEngine, t, token, &sParse); }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF ); sqlite3Fts5ParserFree(pEngine, fts5ParseFree); assert_expr_depth_ok(sParse.rc, sParse.pExpr); /* If the LHS of the MATCH expression was a user column, apply the ** implicit column-filter. */ if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){ int n = sizeof(Fts5Colset); Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n); if( pColset ){ |
︙ | ︙ | |||
230935 230936 230937 230938 230939 230940 230941 230942 230943 230944 230945 230946 230947 230948 230949 230950 230951 230952 230953 230954 230955 230956 | pNode->xNext = fts5ExprNodeNext_NOT; break; }; } } static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){ if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){ int nByte = sizeof(Fts5ExprNode*) * pSub->nChild; memcpy(&p->apChild[p->nChild], pSub->apChild, nByte); p->nChild += pSub->nChild; sqlite3_free(pSub); }else{ p->apChild[p->nChild++] = pSub; } } /* ** This function is used when parsing LIKE or GLOB patterns against ** trigram indexes that specify either detail=column or detail=none. ** It converts a phrase: ** | > > > > | 233131 233132 233133 233134 233135 233136 233137 233138 233139 233140 233141 233142 233143 233144 233145 233146 233147 233148 233149 233150 233151 233152 233153 233154 233155 233156 | pNode->xNext = fts5ExprNodeNext_NOT; break; }; } } static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){ int ii = p->nChild; if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){ int nByte = sizeof(Fts5ExprNode*) * pSub->nChild; memcpy(&p->apChild[p->nChild], pSub->apChild, nByte); p->nChild += pSub->nChild; sqlite3_free(pSub); }else{ p->apChild[p->nChild++] = pSub; } for( ; ii<p->nChild; ii++){ p->iHeight = MAX(p->iHeight, p->apChild[ii]->iHeight + 1); } } /* ** This function is used when parsing LIKE or GLOB patterns against ** trigram indexes that specify either detail=column or detail=none. ** It converts a phrase: ** |
︙ | ︙ | |||
230973 230974 230975 230976 230977 230978 230979 230980 230981 230982 230983 230984 230985 230986 | assert( pParse->bPhraseToAnd ); nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*); pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte); if( pRet ){ pRet->eType = FTS5_AND; pRet->nChild = nTerm; fts5ExprAssignXNext(pRet); pParse->nPhrase--; for(ii=0; ii<nTerm; ii++){ Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero( &pParse->rc, sizeof(Fts5ExprPhrase) ); if( pPhrase ){ | > | 233173 233174 233175 233176 233177 233178 233179 233180 233181 233182 233183 233184 233185 233186 233187 | assert( pParse->bPhraseToAnd ); nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*); pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte); if( pRet ){ pRet->eType = FTS5_AND; pRet->nChild = nTerm; pRet->iHeight = 1; fts5ExprAssignXNext(pRet); pParse->nPhrase--; for(ii=0; ii<nTerm; ii++){ Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero( &pParse->rc, sizeof(Fts5ExprPhrase) ); if( pPhrase ){ |
︙ | ︙ | |||
231078 231079 231080 231081 231082 231083 231084 231085 231086 231087 231088 231089 231090 231091 | sqlite3_free(pRet); pRet = 0; } } }else{ fts5ExprAddChildren(pRet, pLeft); fts5ExprAddChildren(pRet, pRight); } } } } if( pRet==0 ){ assert( pParse->rc!=SQLITE_OK ); | > > > > > > > > | 233279 233280 233281 233282 233283 233284 233285 233286 233287 233288 233289 233290 233291 233292 233293 233294 233295 233296 233297 233298 233299 233300 | sqlite3_free(pRet); pRet = 0; } } }else{ fts5ExprAddChildren(pRet, pLeft); fts5ExprAddChildren(pRet, pRight); if( pRet->iHeight>SQLITE_FTS5_MAX_EXPR_DEPTH ){ sqlite3Fts5ParseError(pParse, "fts5 expression tree is too large (maximum depth %d)", SQLITE_FTS5_MAX_EXPR_DEPTH ); sqlite3_free(pRet); pRet = 0; } } } } } if( pRet==0 ){ assert( pParse->rc!=SQLITE_OK ); |
︙ | ︙ | |||
231156 231157 231158 231159 231160 231161 231162 | pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0); } } return pRet; } | | | 233365 233366 233367 233368 233369 233370 233371 233372 233373 233374 233375 233376 233377 233378 233379 | pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0); } } return pRet; } #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){ sqlite3_int64 nByte = 0; Fts5ExprTerm *p; char *zQuoted; /* Determine the maximum amount of space required. */ for(p=pTerm; p; p=p->pSynonym){ |
︙ | ︙ | |||
231262 231263 231264 231265 231266 231267 231268 231269 231270 231271 231272 231273 231274 231275 | } } if( zRet ) zRet = fts5PrintfAppend(zRet, "}"); if( zRet==0 ) return 0; } }else{ char const *zOp = 0; int i; switch( pExpr->eType ){ case FTS5_AND: zOp = "AND"; break; case FTS5_NOT: zOp = "NOT"; break; default: | > > | 233471 233472 233473 233474 233475 233476 233477 233478 233479 233480 233481 233482 233483 233484 233485 233486 | } } if( zRet ) zRet = fts5PrintfAppend(zRet, "}"); if( zRet==0 ) return 0; } }else if( pExpr->eType==0 ){ zRet = sqlite3_mprintf("{}"); }else{ char const *zOp = 0; int i; switch( pExpr->eType ){ case FTS5_AND: zOp = "AND"; break; case FTS5_NOT: zOp = "NOT"; break; default: |
︙ | ︙ | |||
231523 231524 231525 231526 231527 231528 231529 | int iCode; int bRemoveDiacritics = 0; iCode = sqlite3_value_int(apVal[0]); if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]); sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics)); } } | | | | 233734 233735 233736 233737 233738 233739 233740 233741 233742 233743 233744 233745 233746 233747 233748 233749 233750 233751 233752 233753 233754 233755 | int iCode; int bRemoveDiacritics = 0; iCode = sqlite3_value_int(apVal[0]); if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]); sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics)); } } #endif /* if SQLITE_TEST || SQLITE_FTS5_DEBUG */ /* ** This is called during initialization to register the fts5_expr() scalar ** UDF with the SQLite handle passed as the only argument. */ static int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) struct Fts5ExprFunc { const char *z; void (*x)(sqlite3_context*,int,sqlite3_value**); } aFunc[] = { { "fts5_expr", fts5ExprFunctionHr }, { "fts5_expr_tcl", fts5ExprFunctionTcl }, { "fts5_isalnum", fts5ExprIsAlnum }, |
︙ | ︙ | |||
232290 232291 232292 232293 232294 232295 232296 | } pList = 0; for(i=0; i<nMergeSlot; i++){ pList = fts5HashEntryMerge(pList, ap[i]); } | < | 234501 234502 234503 234504 234505 234506 234507 234508 234509 234510 234511 234512 234513 234514 | } pList = 0; for(i=0; i<nMergeSlot; i++){ pList = fts5HashEntryMerge(pList, ap[i]); } sqlite3_free(ap); *ppSorted = pList; return SQLITE_OK; } /* ** Query the hash table for a doclist associated with term pTerm/nTerm. |
︙ | ︙ | |||
232343 232344 232345 232346 232347 232348 232349 232350 232351 232352 232353 232354 232355 232356 | static int sqlite3Fts5HashScanInit( Fts5Hash *p, /* Hash table to query */ const char *pTerm, int nTerm /* Query prefix */ ){ return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan); } static void sqlite3Fts5HashScanNext(Fts5Hash *p){ assert( !sqlite3Fts5HashScanEof(p) ); p->pScan = p->pScan->pScanNext; } static int sqlite3Fts5HashScanEof(Fts5Hash *p){ | > > > > > > > > > > > > > > > > > > > > > > | 234553 234554 234555 234556 234557 234558 234559 234560 234561 234562 234563 234564 234565 234566 234567 234568 234569 234570 234571 234572 234573 234574 234575 234576 234577 234578 234579 234580 234581 234582 234583 234584 234585 234586 234587 234588 | static int sqlite3Fts5HashScanInit( Fts5Hash *p, /* Hash table to query */ const char *pTerm, int nTerm /* Query prefix */ ){ return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan); } #ifdef SQLITE_DEBUG static int fts5HashCount(Fts5Hash *pHash){ int nEntry = 0; int ii; for(ii=0; ii<pHash->nSlot; ii++){ Fts5HashEntry *p = 0; for(p=pHash->aSlot[ii]; p; p=p->pHashNext){ nEntry++; } } return nEntry; } #endif /* ** Return true if the hash table is empty, false otherwise. */ static int sqlite3Fts5HashIsEmpty(Fts5Hash *pHash){ assert( pHash->nEntry==fts5HashCount(pHash) ); return pHash->nEntry==0; } static void sqlite3Fts5HashScanNext(Fts5Hash *p){ assert( !sqlite3Fts5HashScanEof(p) ); p->pScan = p->pScan->pScanNext; } static int sqlite3Fts5HashScanEof(Fts5Hash *p){ |
︙ | ︙ | |||
232432 232433 232434 232435 232436 232437 232438 232439 232440 232441 232442 232443 232444 232445 | #if FTS5_MAX_PREFIX_INDEXES > 31 # error "FTS5_MAX_PREFIX_INDEXES is too large" #endif #define FTS5_MAX_LEVEL 64 /* ** Details: ** ** The %_data table managed by this module, ** ** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB); ** | > > > > > > > > > > > > > > > > > > | | < < | > > | > > > > > > | 234664 234665 234666 234667 234668 234669 234670 234671 234672 234673 234674 234675 234676 234677 234678 234679 234680 234681 234682 234683 234684 234685 234686 234687 234688 234689 234690 234691 234692 234693 234694 234695 234696 234697 234698 234699 234700 234701 234702 234703 234704 234705 234706 234707 234708 234709 234710 234711 234712 234713 234714 234715 234716 234717 234718 234719 234720 234721 234722 234723 234724 234725 234726 234727 234728 234729 234730 234731 234732 234733 234734 234735 234736 234737 | #if FTS5_MAX_PREFIX_INDEXES > 31 # error "FTS5_MAX_PREFIX_INDEXES is too large" #endif #define FTS5_MAX_LEVEL 64 /* ** There are two versions of the format used for the structure record: ** ** 1. the legacy format, that may be read by all fts5 versions, and ** ** 2. the V2 format, which is used by contentless_delete=1 databases. ** ** Both begin with a 4-byte "configuration cookie" value. Then, a legacy ** format structure record contains a varint - the number of levels in ** the structure. Whereas a V2 structure record contains the constant ** 4 bytes [0xff 0x00 0x00 0x01]. This is unambiguous as the value of a ** varint has to be at least 16256 to begin with "0xFF". And the default ** maximum number of levels is 64. ** ** See below for more on structure record formats. */ #define FTS5_STRUCTURE_V2 "\xFF\x00\x00\x01" /* ** Details: ** ** The %_data table managed by this module, ** ** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB); ** ** , contains the following 6 types of records. See the comments surrounding ** the FTS5_*_ROWID macros below for a description of how %_data rowids are ** assigned to each fo them. ** ** 1. Structure Records: ** ** The set of segments that make up an index - the index structure - are ** recorded in a single record within the %_data table. The record consists ** of a single 32-bit configuration cookie value followed by a list of ** SQLite varints. ** ** If the structure record is a V2 record, the configuration cookie is ** followed by the following 4 bytes: [0xFF 0x00 0x00 0x01]. ** ** Next, the record continues with three varints: ** ** + number of levels, ** + total number of segments on all levels, ** + value of write counter. ** ** Then, for each level from 0 to nMax: ** ** + number of input segments in ongoing merge. ** + total number of segments in level. ** + for each segment from oldest to newest: ** + segment id (always > 0) ** + first leaf page number (often 1, always greater than 0) ** + final leaf page number ** ** Then, for V2 structures only: ** ** + lower origin counter value, ** + upper origin counter value, ** + the number of tombstone hash pages. ** ** 2. The Averages Record: ** ** A single record within the %_data table. The data is a list of varints. ** The first value is the number of rows in the index. Then, for each column ** from left to right, the total number of tokens in the column for all ** rows of the table. ** |
︙ | ︙ | |||
232583 232584 232585 232586 232587 232588 232589 232590 232591 232592 232593 232594 232595 232596 | ** * Page number of first child page. As a varint. ** ** * Copy of first rowid on page indicated by previous field. As a varint. ** ** * A list of delta-encoded varints - the first rowid on each subsequent ** child page. ** */ /* ** Rowids for the averages and structure records in the %_data table. */ #define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */ #define FTS5_STRUCTURE_ROWID 10 /* The structure record */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 234839 234840 234841 234842 234843 234844 234845 234846 234847 234848 234849 234850 234851 234852 234853 234854 234855 234856 234857 234858 234859 234860 234861 234862 234863 234864 234865 234866 234867 234868 234869 234870 234871 234872 234873 234874 234875 234876 234877 234878 234879 234880 234881 234882 234883 234884 | ** * Page number of first child page. As a varint. ** ** * Copy of first rowid on page indicated by previous field. As a varint. ** ** * A list of delta-encoded varints - the first rowid on each subsequent ** child page. ** ** 6. Tombstone Hash Page ** ** These records are only ever present in contentless_delete=1 tables. ** There are zero or more of these associated with each segment. They ** are used to store the tombstone rowids for rows contained in the ** associated segments. ** ** The set of nHashPg tombstone hash pages associated with a single ** segment together form a single hash table containing tombstone rowids. ** To find the page of the hash on which a key might be stored: ** ** iPg = (rowid % nHashPg) ** ** Then, within page iPg, which has nSlot slots: ** ** iSlot = (rowid / nHashPg) % nSlot ** ** Each tombstone hash page begins with an 8 byte header: ** ** 1-byte: Key-size (the size in bytes of each slot). Either 4 or 8. ** 1-byte: rowid-0-tombstone flag. This flag is only valid on the ** first tombstone hash page for each segment (iPg=0). If set, ** the hash table contains rowid 0. If clear, it does not. ** Rowid 0 is handled specially. ** 2-bytes: unused. ** 4-bytes: Big-endian integer containing number of entries on page. ** ** Following this are nSlot 4 or 8 byte slots (depending on the key-size ** in the first byte of the page header). The number of slots may be ** determined based on the size of the page record and the key-size: ** ** nSlot = (nByte - 8) / key-size */ /* ** Rowids for the averages and structure records in the %_data table. */ #define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */ #define FTS5_STRUCTURE_ROWID 10 /* The structure record */ |
︙ | ︙ | |||
232616 232617 232618 232619 232620 232621 232622 232623 232624 232625 232626 232627 232628 232629 | ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \ ((i64)(height) << (FTS5_DATA_PAGE_B)) + \ ((i64)(pgno)) \ ) #define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno) #define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno) #ifdef SQLITE_DEBUG static int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; } #endif /* | > | 234904 234905 234906 234907 234908 234909 234910 234911 234912 234913 234914 234915 234916 234917 234918 | ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \ ((i64)(height) << (FTS5_DATA_PAGE_B)) + \ ((i64)(pgno)) \ ) #define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno) #define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno) #define FTS5_TOMBSTONE_ROWID(segid,ipg) fts5_dri(segid+(1<<16), 0, 0, ipg) #ifdef SQLITE_DEBUG static int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; } #endif /* |
︙ | ︙ | |||
232651 232652 232653 232654 232655 232656 232657 232658 232659 232660 232661 232662 232663 232664 232665 232666 232667 232668 232669 232670 232671 232672 232673 232674 232675 232676 232677 232678 | u8 *p; /* Pointer to buffer containing record */ int nn; /* Size of record in bytes */ int szLeaf; /* Size of leaf without page-index */ }; /* ** One object per %_data table. */ struct Fts5Index { Fts5Config *pConfig; /* Virtual table configuration */ char *zDataTbl; /* Name of %_data table */ int nWorkUnit; /* Leaf pages in a "unit" of work */ /* ** Variables related to the accumulation of tokens and doclists within the ** in-memory hash tables before they are flushed to disk. */ Fts5Hash *pHash; /* Hash table for in-memory data */ int nPendingData; /* Current bytes of pending data */ i64 iWriteRowid; /* Rowid for current doc being written */ int bDelete; /* Current write is a delete */ /* Error state. */ int rc; /* Current error code */ /* State used by the fts5DataXXX() functions. */ sqlite3_blob *pReader; /* RO incr-blob open on %_data table */ sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */ | > > > > > > > > | 234940 234941 234942 234943 234944 234945 234946 234947 234948 234949 234950 234951 234952 234953 234954 234955 234956 234957 234958 234959 234960 234961 234962 234963 234964 234965 234966 234967 234968 234969 234970 234971 234972 234973 234974 234975 | u8 *p; /* Pointer to buffer containing record */ int nn; /* Size of record in bytes */ int szLeaf; /* Size of leaf without page-index */ }; /* ** One object per %_data table. ** ** nContentlessDelete: ** The number of contentless delete operations since the most recent ** call to fts5IndexFlush() or fts5IndexDiscardData(). This is tracked ** so that extra auto-merge work can be done by fts5IndexFlush() to ** account for the delete operations. */ struct Fts5Index { Fts5Config *pConfig; /* Virtual table configuration */ char *zDataTbl; /* Name of %_data table */ int nWorkUnit; /* Leaf pages in a "unit" of work */ /* ** Variables related to the accumulation of tokens and doclists within the ** in-memory hash tables before they are flushed to disk. */ Fts5Hash *pHash; /* Hash table for in-memory data */ int nPendingData; /* Current bytes of pending data */ i64 iWriteRowid; /* Rowid for current doc being written */ int bDelete; /* Current write is a delete */ int nContentlessDelete; /* Number of contentless delete ops */ int nPendingRow; /* Number of INSERT in hash table */ /* Error state. */ int rc; /* Current error code */ /* State used by the fts5DataXXX() functions. */ sqlite3_blob *pReader; /* RO incr-blob open on %_data table */ sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */ |
︙ | ︙ | |||
232699 232700 232701 232702 232703 232704 232705 232706 232707 232708 232709 232710 232711 232712 232713 232714 232715 232716 232717 232718 232719 232720 232721 232722 232723 232724 232725 232726 | int nSize; }; /* ** The contents of the "structure" record for each index are represented ** using an Fts5Structure record in memory. Which uses instances of the ** other Fts5StructureXXX types as components. */ struct Fts5StructureSegment { int iSegid; /* Segment id */ int pgnoFirst; /* First leaf page number in segment */ int pgnoLast; /* Last leaf page number in segment */ }; struct Fts5StructureLevel { int nMerge; /* Number of segments in incr-merge */ int nSeg; /* Total number of segments on level */ Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */ }; struct Fts5Structure { int nRef; /* Object reference count */ u64 nWriteCounter; /* Total leaves written to level 0 */ int nSegment; /* Total segments in this structure */ int nLevel; /* Number of levels in this index */ Fts5StructureLevel aLevel[1]; /* Array of nLevel level objects */ }; /* ** An object of type Fts5SegWriter is used to write to segments. | > > > > > > > > > > > > > | 234996 234997 234998 234999 235000 235001 235002 235003 235004 235005 235006 235007 235008 235009 235010 235011 235012 235013 235014 235015 235016 235017 235018 235019 235020 235021 235022 235023 235024 235025 235026 235027 235028 235029 235030 235031 235032 235033 235034 235035 235036 | int nSize; }; /* ** The contents of the "structure" record for each index are represented ** using an Fts5Structure record in memory. Which uses instances of the ** other Fts5StructureXXX types as components. ** ** nOriginCntr: ** This value is set to non-zero for structure records created for ** contentlessdelete=1 tables only. In that case it represents the ** origin value to apply to the next top-level segment created. */ struct Fts5StructureSegment { int iSegid; /* Segment id */ int pgnoFirst; /* First leaf page number in segment */ int pgnoLast; /* Last leaf page number in segment */ /* contentlessdelete=1 tables only: */ u64 iOrigin1; u64 iOrigin2; int nPgTombstone; /* Number of tombstone hash table pages */ u64 nEntryTombstone; /* Number of tombstone entries that "count" */ u64 nEntry; /* Number of rows in this segment */ }; struct Fts5StructureLevel { int nMerge; /* Number of segments in incr-merge */ int nSeg; /* Total number of segments on level */ Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */ }; struct Fts5Structure { int nRef; /* Object reference count */ u64 nWriteCounter; /* Total leaves written to level 0 */ u64 nOriginCntr; /* Origin value for next top-level segment */ int nSegment; /* Total segments in this structure */ int nLevel; /* Number of levels in this index */ Fts5StructureLevel aLevel[1]; /* Array of nLevel level objects */ }; /* ** An object of type Fts5SegWriter is used to write to segments. |
︙ | ︙ | |||
232801 232802 232803 232804 232805 232806 232807 232808 232809 232810 232811 232812 232813 232814 232815 232816 232817 232818 232819 232820 232821 232822 | ** ** For each rowid on the page corresponding to the current term, the ** corresponding aRowidOffset[] entry is set to the byte offset of the ** start of the "position-list-size" field within the page. ** ** iTermIdx: ** Index of current term on iTermLeafPgno. */ struct Fts5SegIter { Fts5StructureSegment *pSeg; /* Segment to iterate through */ int flags; /* Mask of configuration flags */ int iLeafPgno; /* Current leaf page number */ Fts5Data *pLeaf; /* Current leaf data */ Fts5Data *pNextLeaf; /* Leaf page (iLeafPgno+1) */ i64 iLeafOffset; /* Byte offset within current leaf */ /* Next method */ void (*xNext)(Fts5Index*, Fts5SegIter*, int*); /* The page and offset from which the current term was read. The offset ** is the offset of the first rowid in the current doclist. */ int iTermLeafPgno; | > > > > > > > > > | 235111 235112 235113 235114 235115 235116 235117 235118 235119 235120 235121 235122 235123 235124 235125 235126 235127 235128 235129 235130 235131 235132 235133 235134 235135 235136 235137 235138 235139 235140 235141 | ** ** For each rowid on the page corresponding to the current term, the ** corresponding aRowidOffset[] entry is set to the byte offset of the ** start of the "position-list-size" field within the page. ** ** iTermIdx: ** Index of current term on iTermLeafPgno. ** ** apTombstone/nTombstone: ** These are used for contentless_delete=1 tables only. When the cursor ** is first allocated, the apTombstone[] array is allocated so that it ** is large enough for all tombstones hash pages associated with the ** segment. The pages themselves are loaded lazily from the database as ** they are required. */ struct Fts5SegIter { Fts5StructureSegment *pSeg; /* Segment to iterate through */ int flags; /* Mask of configuration flags */ int iLeafPgno; /* Current leaf page number */ Fts5Data *pLeaf; /* Current leaf data */ Fts5Data *pNextLeaf; /* Leaf page (iLeafPgno+1) */ i64 iLeafOffset; /* Byte offset within current leaf */ Fts5Data **apTombstone; /* Array of tombstone pages */ int nTombstone; /* Next method */ void (*xNext)(Fts5Index*, Fts5SegIter*, int*); /* The page and offset from which the current term was read. The offset ** is the offset of the first rowid in the current doclist. */ int iTermLeafPgno; |
︙ | ︙ | |||
232937 232938 232939 232940 232941 232942 232943 232944 232945 232946 232947 232948 232949 232950 | aOut[0] = (iVal>>8); aOut[1] = (iVal&0xFF); } static u16 fts5GetU16(const u8 *aIn){ return ((u16)aIn[0] << 8) + aIn[1]; } /* ** Allocate and return a buffer at least nByte bytes in size. ** ** If an OOM error is encountered, return NULL and set the error code in ** the Fts5Index handle passed as the first argument. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 235256 235257 235258 235259 235260 235261 235262 235263 235264 235265 235266 235267 235268 235269 235270 235271 235272 235273 235274 235275 235276 235277 235278 235279 235280 235281 235282 235283 235284 235285 235286 235287 235288 235289 235290 235291 235292 235293 235294 235295 235296 235297 235298 235299 235300 235301 235302 235303 235304 235305 235306 235307 235308 235309 235310 235311 235312 235313 235314 235315 235316 235317 235318 235319 235320 235321 235322 235323 | aOut[0] = (iVal>>8); aOut[1] = (iVal&0xFF); } static u16 fts5GetU16(const u8 *aIn){ return ((u16)aIn[0] << 8) + aIn[1]; } /* ** The only argument points to a buffer at least 8 bytes in size. This ** function interprets the first 8 bytes of the buffer as a 64-bit big-endian ** unsigned integer and returns the result. */ static u64 fts5GetU64(u8 *a){ return ((u64)a[0] << 56) + ((u64)a[1] << 48) + ((u64)a[2] << 40) + ((u64)a[3] << 32) + ((u64)a[4] << 24) + ((u64)a[5] << 16) + ((u64)a[6] << 8) + ((u64)a[7] << 0); } /* ** The only argument points to a buffer at least 4 bytes in size. This ** function interprets the first 4 bytes of the buffer as a 32-bit big-endian ** unsigned integer and returns the result. */ static u32 fts5GetU32(const u8 *a){ return ((u32)a[0] << 24) + ((u32)a[1] << 16) + ((u32)a[2] << 8) + ((u32)a[3] << 0); } /* ** Write iVal, formated as a 64-bit big-endian unsigned integer, to the ** buffer indicated by the first argument. */ static void fts5PutU64(u8 *a, u64 iVal){ a[0] = ((iVal >> 56) & 0xFF); a[1] = ((iVal >> 48) & 0xFF); a[2] = ((iVal >> 40) & 0xFF); a[3] = ((iVal >> 32) & 0xFF); a[4] = ((iVal >> 24) & 0xFF); a[5] = ((iVal >> 16) & 0xFF); a[6] = ((iVal >> 8) & 0xFF); a[7] = ((iVal >> 0) & 0xFF); } /* ** Write iVal, formated as a 32-bit big-endian unsigned integer, to the ** buffer indicated by the first argument. */ static void fts5PutU32(u8 *a, u32 iVal){ a[0] = ((iVal >> 24) & 0xFF); a[1] = ((iVal >> 16) & 0xFF); a[2] = ((iVal >> 8) & 0xFF); a[3] = ((iVal >> 0) & 0xFF); } /* ** Allocate and return a buffer at least nByte bytes in size. ** ** If an OOM error is encountered, return NULL and set the error code in ** the Fts5Index handle passed as the first argument. */ |
︙ | ︙ | |||
233165 233166 233167 233168 233169 233170 233171 | sqlite3_step(p->pDeleter); p->rc = sqlite3_reset(p->pDeleter); } /* ** Remove all records associated with segment iSegid. */ | | > > > > > > > | 235538 235539 235540 235541 235542 235543 235544 235545 235546 235547 235548 235549 235550 235551 235552 235553 235554 235555 235556 235557 235558 235559 235560 235561 235562 | sqlite3_step(p->pDeleter); p->rc = sqlite3_reset(p->pDeleter); } /* ** Remove all records associated with segment iSegid. */ static void fts5DataRemoveSegment(Fts5Index *p, Fts5StructureSegment *pSeg){ int iSegid = pSeg->iSegid; i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0); i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1; fts5DataDelete(p, iFirst, iLast); if( pSeg->nPgTombstone ){ i64 iTomb1 = FTS5_TOMBSTONE_ROWID(iSegid, 0); i64 iTomb2 = FTS5_TOMBSTONE_ROWID(iSegid, pSeg->nPgTombstone-1); fts5DataDelete(p, iTomb1, iTomb2); } if( p->pIdxDeleter==0 ){ Fts5Config *pConfig = p->pConfig; fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf( "DELETE FROM '%q'.'%q_idx' WHERE segid=?", pConfig->zDb, pConfig->zName )); } |
︙ | ︙ | |||
233279 233280 233281 233282 233283 233284 233285 233286 233287 233288 233289 233290 233291 233292 233293 233294 233295 233296 | int rc = SQLITE_OK; int i = 0; int iLvl; int nLevel = 0; int nSegment = 0; sqlite3_int64 nByte; /* Bytes of space to allocate at pRet */ Fts5Structure *pRet = 0; /* Structure object to return */ /* Grab the cookie value */ if( piCookie ) *piCookie = sqlite3Fts5Get32(pData); i = 4; /* Read the total number of levels and segments from the start of the ** structure record. */ i += fts5GetVarint32(&pData[i], nLevel); i += fts5GetVarint32(&pData[i], nSegment); if( nLevel>FTS5_MAX_SEGMENT || nLevel<0 || nSegment>FTS5_MAX_SEGMENT || nSegment<0 | > > > > > > > > | 235659 235660 235661 235662 235663 235664 235665 235666 235667 235668 235669 235670 235671 235672 235673 235674 235675 235676 235677 235678 235679 235680 235681 235682 235683 235684 | int rc = SQLITE_OK; int i = 0; int iLvl; int nLevel = 0; int nSegment = 0; sqlite3_int64 nByte; /* Bytes of space to allocate at pRet */ Fts5Structure *pRet = 0; /* Structure object to return */ int bStructureV2 = 0; /* True for FTS5_STRUCTURE_V2 */ u64 nOriginCntr = 0; /* Largest origin value seen so far */ /* Grab the cookie value */ if( piCookie ) *piCookie = sqlite3Fts5Get32(pData); i = 4; /* Check if this is a V2 structure record. Set bStructureV2 if it is. */ if( 0==memcmp(&pData[i], FTS5_STRUCTURE_V2, 4) ){ i += 4; bStructureV2 = 1; } /* Read the total number of levels and segments from the start of the ** structure record. */ i += fts5GetVarint32(&pData[i], nLevel); i += fts5GetVarint32(&pData[i], nSegment); if( nLevel>FTS5_MAX_SEGMENT || nLevel<0 || nSegment>FTS5_MAX_SEGMENT || nSegment<0 |
︙ | ︙ | |||
233334 233335 233336 233337 233338 233339 233340 233341 233342 233343 233344 233345 233346 233347 233348 233349 233350 233351 233352 233353 233354 233355 233356 233357 | rc = FTS5_CORRUPT; break; } assert( pSeg!=0 ); i += fts5GetVarint32(&pData[i], pSeg->iSegid); i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst); i += fts5GetVarint32(&pData[i], pSeg->pgnoLast); if( pSeg->pgnoLast<pSeg->pgnoFirst ){ rc = FTS5_CORRUPT; break; } } if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT; if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT; } } if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT; if( rc!=SQLITE_OK ){ fts5StructureRelease(pRet); pRet = 0; } } | > > > > > > > > > > > | 235722 235723 235724 235725 235726 235727 235728 235729 235730 235731 235732 235733 235734 235735 235736 235737 235738 235739 235740 235741 235742 235743 235744 235745 235746 235747 235748 235749 235750 235751 235752 235753 235754 235755 235756 | rc = FTS5_CORRUPT; break; } assert( pSeg!=0 ); i += fts5GetVarint32(&pData[i], pSeg->iSegid); i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst); i += fts5GetVarint32(&pData[i], pSeg->pgnoLast); if( bStructureV2 ){ i += fts5GetVarint(&pData[i], &pSeg->iOrigin1); i += fts5GetVarint(&pData[i], &pSeg->iOrigin2); i += fts5GetVarint32(&pData[i], pSeg->nPgTombstone); i += fts5GetVarint(&pData[i], &pSeg->nEntryTombstone); i += fts5GetVarint(&pData[i], &pSeg->nEntry); nOriginCntr = MAX(nOriginCntr, pSeg->iOrigin2); } if( pSeg->pgnoLast<pSeg->pgnoFirst ){ rc = FTS5_CORRUPT; break; } } if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT; if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT; } } if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT; if( bStructureV2 ){ pRet->nOriginCntr = nOriginCntr+1; } if( rc!=SQLITE_OK ){ fts5StructureRelease(pRet); pRet = 0; } } |
︙ | ︙ | |||
233556 233557 233558 233559 233560 233561 233562 233563 233564 233565 233566 233567 233568 233569 233570 | ** error has already occurred, this function is a no-op. */ static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){ if( p->rc==SQLITE_OK ){ Fts5Buffer buf; /* Buffer to serialize record into */ int iLvl; /* Used to iterate through levels */ int iCookie; /* Cookie value to store */ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) ); memset(&buf, 0, sizeof(Fts5Buffer)); /* Append the current configuration cookie */ iCookie = p->pConfig->iCookie; if( iCookie<0 ) iCookie = 0; | > | > > > > | | | > > > > > > > | 235955 235956 235957 235958 235959 235960 235961 235962 235963 235964 235965 235966 235967 235968 235969 235970 235971 235972 235973 235974 235975 235976 235977 235978 235979 235980 235981 235982 235983 235984 235985 235986 235987 235988 235989 235990 235991 235992 235993 235994 235995 235996 235997 235998 235999 236000 236001 236002 236003 236004 236005 236006 236007 | ** error has already occurred, this function is a no-op. */ static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){ if( p->rc==SQLITE_OK ){ Fts5Buffer buf; /* Buffer to serialize record into */ int iLvl; /* Used to iterate through levels */ int iCookie; /* Cookie value to store */ int nHdr = (pStruct->nOriginCntr>0 ? (4+4+9+9+9) : (4+9+9)); assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) ); memset(&buf, 0, sizeof(Fts5Buffer)); /* Append the current configuration cookie */ iCookie = p->pConfig->iCookie; if( iCookie<0 ) iCookie = 0; if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, nHdr) ){ sqlite3Fts5Put32(buf.p, iCookie); buf.n = 4; if( pStruct->nOriginCntr>0 ){ fts5BufferSafeAppendBlob(&buf, FTS5_STRUCTURE_V2, 4); } fts5BufferSafeAppendVarint(&buf, pStruct->nLevel); fts5BufferSafeAppendVarint(&buf, pStruct->nSegment); fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter); } for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ int iSeg; /* Used to iterate through segments */ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl]; fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge); fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg); assert( pLvl->nMerge<=pLvl->nSeg ); for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg]; fts5BufferAppendVarint(&p->rc, &buf, pSeg->iSegid); fts5BufferAppendVarint(&p->rc, &buf, pSeg->pgnoFirst); fts5BufferAppendVarint(&p->rc, &buf, pSeg->pgnoLast); if( pStruct->nOriginCntr>0 ){ fts5BufferAppendVarint(&p->rc, &buf, pSeg->iOrigin1); fts5BufferAppendVarint(&p->rc, &buf, pSeg->iOrigin2); fts5BufferAppendVarint(&p->rc, &buf, pSeg->nPgTombstone); fts5BufferAppendVarint(&p->rc, &buf, pSeg->nEntryTombstone); fts5BufferAppendVarint(&p->rc, &buf, pSeg->nEntry); } } } fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n); fts5BufferFree(&buf); } } |
︙ | ︙ | |||
234104 234105 234106 234107 234108 234109 234110 234111 234112 234113 234114 234115 234116 234117 | pIter->xNext = fts5SegIterNext_Reverse; }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){ pIter->xNext = fts5SegIterNext_None; }else{ pIter->xNext = fts5SegIterNext; } } /* ** Initialize the iterator object pIter to iterate through the entries in ** segment pSeg. The iterator is left pointing to the first entry when ** this function returns. ** ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If | > > > > > > > > > > > > > > > > > | 236515 236516 236517 236518 236519 236520 236521 236522 236523 236524 236525 236526 236527 236528 236529 236530 236531 236532 236533 236534 236535 236536 236537 236538 236539 236540 236541 236542 236543 236544 236545 | pIter->xNext = fts5SegIterNext_Reverse; }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){ pIter->xNext = fts5SegIterNext_None; }else{ pIter->xNext = fts5SegIterNext; } } /* ** Allocate a tombstone hash page array (pIter->apTombstone) for the ** iterator passed as the second argument. If an OOM error occurs, leave ** an error in the Fts5Index object. */ static void fts5SegIterAllocTombstone(Fts5Index *p, Fts5SegIter *pIter){ const int nTomb = pIter->pSeg->nPgTombstone; if( nTomb>0 ){ Fts5Data **apTomb = 0; apTomb = (Fts5Data**)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data)*nTomb); if( apTomb ){ pIter->apTombstone = apTomb; pIter->nTombstone = nTomb; } } } /* ** Initialize the iterator object pIter to iterate through the entries in ** segment pSeg. The iterator is left pointing to the first entry when ** this function returns. ** ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If |
︙ | ︙ | |||
234146 234147 234148 234149 234150 234151 234152 234153 234154 234155 234156 234157 234158 234159 | pIter->iLeafOffset = 4; assert( pIter->pLeaf!=0 ); assert_nc( pIter->pLeaf->nn>4 ); assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 ); pIter->iPgidxOff = pIter->pLeaf->szLeaf+1; fts5SegIterLoadTerm(p, pIter, 0); fts5SegIterLoadNPos(p, pIter); } } /* ** This function is only ever called on iterators created by calls to ** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set. ** | > | 236574 236575 236576 236577 236578 236579 236580 236581 236582 236583 236584 236585 236586 236587 236588 | pIter->iLeafOffset = 4; assert( pIter->pLeaf!=0 ); assert_nc( pIter->pLeaf->nn>4 ); assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 ); pIter->iPgidxOff = pIter->pLeaf->szLeaf+1; fts5SegIterLoadTerm(p, pIter, 0); fts5SegIterLoadNPos(p, pIter); fts5SegIterAllocTombstone(p, pIter); } } /* ** This function is only ever called on iterators created by calls to ** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set. ** |
︙ | ︙ | |||
234847 234848 234849 234850 234851 234852 234853 234854 234855 234856 234857 234858 234859 234860 | if( flags & FTS5INDEX_QUERY_DESC ){ fts5SegIterReverse(p, pIter); } } } fts5SegIterSetNext(p, pIter); /* Either: ** ** 1) an error has occurred, or ** 2) the iterator points to EOF, or ** 3) the iterator points to an entry with term (pTerm/nTerm), or ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points | > | 237276 237277 237278 237279 237280 237281 237282 237283 237284 237285 237286 237287 237288 237289 237290 | if( flags & FTS5INDEX_QUERY_DESC ){ fts5SegIterReverse(p, pIter); } } } fts5SegIterSetNext(p, pIter); fts5SegIterAllocTombstone(p, pIter); /* Either: ** ** 1) an error has occurred, or ** 2) the iterator points to EOF, or ** 3) the iterator points to an entry with term (pTerm/nTerm), or ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points |
︙ | ︙ | |||
234926 234927 234928 234929 234930 234931 234932 234933 234934 234935 234936 234937 234938 234939 234940 234941 234942 234943 234944 234945 234946 234947 | }else{ fts5SegIterLoadNPos(p, pIter); } } fts5SegIterSetNext(p, pIter); } /* ** Zero the iterator passed as the only argument. */ static void fts5SegIterClear(Fts5SegIter *pIter){ fts5BufferFree(&pIter->term); fts5DataRelease(pIter->pLeaf); fts5DataRelease(pIter->pNextLeaf); fts5DlidxIterFree(pIter->pDlidx); sqlite3_free(pIter->aRowidOffset); memset(pIter, 0, sizeof(Fts5SegIter)); } #ifdef SQLITE_DEBUG | > > > > > > > > > > > > > > > | 237356 237357 237358 237359 237360 237361 237362 237363 237364 237365 237366 237367 237368 237369 237370 237371 237372 237373 237374 237375 237376 237377 237378 237379 237380 237381 237382 237383 237384 237385 237386 237387 237388 237389 237390 237391 237392 | }else{ fts5SegIterLoadNPos(p, pIter); } } fts5SegIterSetNext(p, pIter); } /* ** Array ap[] contains n elements. Release each of these elements using ** fts5DataRelease(). Then free the array itself using sqlite3_free(). */ static void fts5IndexFreeArray(Fts5Data **ap, int n){ if( ap ){ int ii; for(ii=0; ii<n; ii++){ fts5DataRelease(ap[ii]); } sqlite3_free(ap); } } /* ** Zero the iterator passed as the only argument. */ static void fts5SegIterClear(Fts5SegIter *pIter){ fts5BufferFree(&pIter->term); fts5DataRelease(pIter->pLeaf); fts5DataRelease(pIter->pNextLeaf); fts5IndexFreeArray(pIter->apTombstone, pIter->nTombstone); fts5DlidxIterFree(pIter->pDlidx); sqlite3_free(pIter->aRowidOffset); memset(pIter, 0, sizeof(Fts5SegIter)); } #ifdef SQLITE_DEBUG |
︙ | ︙ | |||
235270 235271 235272 235273 235274 235275 235276 235277 235278 235279 235280 235281 235282 235283 | ** Set the pIter->bEof variable based on the state of the sub-iterators. */ static void fts5MultiIterSetEof(Fts5Iter *pIter){ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; pIter->base.bEof = pSeg->pLeaf==0; pIter->iSwitchRowid = pSeg->iRowid; } /* ** Move the iterator to the next entry. ** ** If an error occurs, an error code is left in Fts5Index.rc. It is not ** considered an error if the iterator reaches EOF, or if it is already at ** EOF when this function is called. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 237715 237716 237717 237718 237719 237720 237721 237722 237723 237724 237725 237726 237727 237728 237729 237730 237731 237732 237733 237734 237735 237736 237737 237738 237739 237740 237741 237742 237743 237744 237745 237746 237747 237748 237749 237750 237751 237752 237753 237754 237755 237756 237757 237758 237759 237760 237761 237762 237763 237764 237765 237766 237767 237768 237769 237770 237771 237772 237773 237774 237775 237776 237777 237778 237779 237780 237781 237782 237783 237784 237785 237786 237787 237788 237789 237790 237791 237792 237793 237794 237795 237796 237797 237798 237799 237800 237801 237802 237803 237804 237805 237806 | ** Set the pIter->bEof variable based on the state of the sub-iterators. */ static void fts5MultiIterSetEof(Fts5Iter *pIter){ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; pIter->base.bEof = pSeg->pLeaf==0; pIter->iSwitchRowid = pSeg->iRowid; } /* ** The argument to this macro must be an Fts5Data structure containing a ** tombstone hash page. This macro returns the key-size of the hash-page. */ #define TOMBSTONE_KEYSIZE(pPg) (pPg->p[0]==4 ? 4 : 8) #define TOMBSTONE_NSLOT(pPg) \ ((pPg->nn > 16) ? ((pPg->nn-8) / TOMBSTONE_KEYSIZE(pPg)) : 1) /* ** Query a single tombstone hash table for rowid iRowid. Return true if ** it is found or false otherwise. The tombstone hash table is one of ** nHashTable tables. */ static int fts5IndexTombstoneQuery( Fts5Data *pHash, /* Hash table page to query */ int nHashTable, /* Number of pages attached to segment */ u64 iRowid /* Rowid to query hash for */ ){ const int szKey = TOMBSTONE_KEYSIZE(pHash); const int nSlot = TOMBSTONE_NSLOT(pHash); int iSlot = (iRowid / nHashTable) % nSlot; int nCollide = nSlot; if( iRowid==0 ){ return pHash->p[1]; }else if( szKey==4 ){ u32 *aSlot = (u32*)&pHash->p[8]; while( aSlot[iSlot] ){ if( fts5GetU32((u8*)&aSlot[iSlot])==iRowid ) return 1; if( nCollide--==0 ) break; iSlot = (iSlot+1)%nSlot; } }else{ u64 *aSlot = (u64*)&pHash->p[8]; while( aSlot[iSlot] ){ if( fts5GetU64((u8*)&aSlot[iSlot])==iRowid ) return 1; if( nCollide--==0 ) break; iSlot = (iSlot+1)%nSlot; } } return 0; } /* ** Return true if the iterator passed as the only argument points ** to an segment entry for which there is a tombstone. Return false ** if there is no tombstone or if the iterator is already at EOF. */ static int fts5MultiIterIsDeleted(Fts5Iter *pIter){ int iFirst = pIter->aFirst[1].iFirst; Fts5SegIter *pSeg = &pIter->aSeg[iFirst]; if( pSeg->pLeaf && pSeg->nTombstone ){ /* Figure out which page the rowid might be present on. */ int iPg = ((u64)pSeg->iRowid) % pSeg->nTombstone; assert( iPg>=0 ); /* If tombstone hash page iPg has not yet been loaded from the ** database, load it now. */ if( pSeg->apTombstone[iPg]==0 ){ pSeg->apTombstone[iPg] = fts5DataRead(pIter->pIndex, FTS5_TOMBSTONE_ROWID(pSeg->pSeg->iSegid, iPg) ); if( pSeg->apTombstone[iPg]==0 ) return 0; } return fts5IndexTombstoneQuery( pSeg->apTombstone[iPg], pSeg->nTombstone, pSeg->iRowid ); } return 0; } /* ** Move the iterator to the next entry. ** ** If an error occurs, an error code is left in Fts5Index.rc. It is not ** considered an error if the iterator reaches EOF, or if it is already at ** EOF when this function is called. |
︙ | ︙ | |||
235308 235309 235310 235311 235312 235313 235314 | fts5MultiIterSetEof(pIter); pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst]; if( pSeg->pLeaf==0 ) return; } fts5AssertMultiIterSetup(p, pIter); assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf ); | | > > | 237831 237832 237833 237834 237835 237836 237837 237838 237839 237840 237841 237842 237843 237844 237845 237846 237847 | fts5MultiIterSetEof(pIter); pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst]; if( pSeg->pLeaf==0 ) return; } fts5AssertMultiIterSetup(p, pIter); assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf ); if( (pIter->bSkipEmpty==0 || pSeg->nPos) && 0==fts5MultiIterIsDeleted(pIter) ){ pIter->xSetOutputs(pIter, pSeg); return; } bUseFrom = 0; } } |
︙ | ︙ | |||
235340 235341 235342 235343 235344 235345 235346 | ){ fts5MultiIterAdvanced(p, pIter, iFirst, 1); fts5MultiIterSetEof(pIter); *pbNewTerm = 1; } fts5AssertMultiIterSetup(p, pIter); | | > > | 237865 237866 237867 237868 237869 237870 237871 237872 237873 237874 237875 237876 237877 237878 237879 237880 237881 | ){ fts5MultiIterAdvanced(p, pIter, iFirst, 1); fts5MultiIterSetEof(pIter); *pbNewTerm = 1; } fts5AssertMultiIterSetup(p, pIter); }while( (fts5MultiIterIsEmpty(p, pIter) || fts5MultiIterIsDeleted(pIter)) && (p->rc==SQLITE_OK) ); } } static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){ UNUSED_PARAM2(pUnused1, pUnused2); } |
︙ | ︙ | |||
235895 235896 235897 235898 235899 235900 235901 | if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0); fts5MultiIterAdvanced(p, pNew, iEq, iIter); } } fts5MultiIterSetEof(pNew); fts5AssertMultiIterSetup(p, pNew); | | > > | 238422 238423 238424 238425 238426 238427 238428 238429 238430 238431 238432 238433 238434 238435 238436 238437 238438 | if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0); fts5MultiIterAdvanced(p, pNew, iEq, iIter); } } fts5MultiIterSetEof(pNew); fts5AssertMultiIterSetup(p, pNew); if( (pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew)) || fts5MultiIterIsDeleted(pNew) ){ fts5MultiIterNext(p, pNew, 0, 0); }else if( pNew->base.bEof==0 ){ Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst]; pNew->xSetOutputs(pNew, pSeg); } }else{ |
︙ | ︙ | |||
236073 236074 236075 236076 236077 236078 236079 236080 236081 236082 236083 236084 236085 236086 236087 | ** Discard all data currently cached in the hash-tables. */ static void fts5IndexDiscardData(Fts5Index *p){ assert( p->pHash || p->nPendingData==0 ); if( p->pHash ){ sqlite3Fts5HashClear(p->pHash); p->nPendingData = 0; } } /* ** Return the size of the prefix, in bytes, that buffer ** (pNew/<length-unknown>) shares with buffer (pOld/nOld). ** ** Buffer (pNew/<length-unknown>) is guaranteed to be greater | > > | 238602 238603 238604 238605 238606 238607 238608 238609 238610 238611 238612 238613 238614 238615 238616 238617 238618 | ** Discard all data currently cached in the hash-tables. */ static void fts5IndexDiscardData(Fts5Index *p){ assert( p->pHash || p->nPendingData==0 ); if( p->pHash ){ sqlite3Fts5HashClear(p->pHash); p->nPendingData = 0; p->nPendingRow = 0; } p->nContentlessDelete = 0; } /* ** Return the size of the prefix, in bytes, that buffer ** (pNew/<length-unknown>) shares with buffer (pOld/nOld). ** ** Buffer (pNew/<length-unknown>) is guaranteed to be greater |
︙ | ︙ | |||
236710 236711 236712 236713 236714 236715 236716 236717 236718 236719 236720 236721 236722 236723 | pLvlOut->nSeg++; pSeg->pgnoFirst = 1; pSeg->iSegid = iSegid; pStruct->nSegment++; /* Read input from all segments in the input level */ nInput = pLvl->nSeg; } bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2); assert( iLvl>=0 ); for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter); fts5MultiIterEof(p, pIter)==0; fts5MultiIterNext(p, pIter, 0, 0) | > > > > > > | 239241 239242 239243 239244 239245 239246 239247 239248 239249 239250 239251 239252 239253 239254 239255 239256 239257 239258 239259 239260 | pLvlOut->nSeg++; pSeg->pgnoFirst = 1; pSeg->iSegid = iSegid; pStruct->nSegment++; /* Read input from all segments in the input level */ nInput = pLvl->nSeg; /* Set the range of origins that will go into the output segment. */ if( pStruct->nOriginCntr>0 ){ pSeg->iOrigin1 = pLvl->aSeg[0].iOrigin1; pSeg->iOrigin2 = pLvl->aSeg[pLvl->nSeg-1].iOrigin2; } } bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2); assert( iLvl>=0 ); for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter); fts5MultiIterEof(p, pIter)==0; fts5MultiIterNext(p, pIter, 0, 0) |
︙ | ︙ | |||
236769 236770 236771 236772 236773 236774 236775 236776 | fts5WriteFinish(p, &writer, &pSeg->pgnoLast); assert( pIter!=0 || p->rc!=SQLITE_OK ); if( fts5MultiIterEof(p, pIter) ){ int i; /* Remove the redundant segments from the %_data table */ for(i=0; i<nInput; i++){ | > > > | | 239306 239307 239308 239309 239310 239311 239312 239313 239314 239315 239316 239317 239318 239319 239320 239321 239322 239323 239324 | fts5WriteFinish(p, &writer, &pSeg->pgnoLast); assert( pIter!=0 || p->rc!=SQLITE_OK ); if( fts5MultiIterEof(p, pIter) ){ int i; /* Remove the redundant segments from the %_data table */ assert( pSeg->nEntry==0 ); for(i=0; i<nInput; i++){ Fts5StructureSegment *pOld = &pLvl->aSeg[i]; pSeg->nEntry += (pOld->nEntry - pOld->nEntryTombstone); fts5DataRemoveSegment(p, pOld); } /* Remove the redundant segments from the input level */ if( pLvl->nSeg!=nInput ){ int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment); memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove); } |
︙ | ︙ | |||
236795 236796 236797 236798 236799 236800 236801 236802 236803 236804 236805 236806 236807 236808 236809 236810 236811 236812 236813 236814 236815 236816 236817 236818 236819 236820 236821 | pLvl->nMerge = nInput; } fts5MultiIterFree(pIter); fts5BufferFree(&term); if( pnRem ) *pnRem -= writer.nLeafWritten; } /* ** Do up to nPg pages of automerge work on the index. ** ** Return true if any changes were actually made, or false otherwise. */ static int fts5IndexMerge( Fts5Index *p, /* FTS5 backend object */ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */ int nPg, /* Pages of work to do */ int nMin /* Minimum number of segments to merge */ ){ int nRem = nPg; int bRet = 0; Fts5Structure *pStruct = *ppStruct; while( nRem>0 && p->rc==SQLITE_OK ){ int iLvl; /* To iterate through levels */ int iBestLvl = 0; /* Level offering the most input segments */ int nBest = 0; /* Number of input segments on best level */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | < < < | < < | < > > | 239335 239336 239337 239338 239339 239340 239341 239342 239343 239344 239345 239346 239347 239348 239349 239350 239351 239352 239353 239354 239355 239356 239357 239358 239359 239360 239361 239362 239363 239364 239365 239366 239367 239368 239369 239370 239371 239372 239373 239374 239375 239376 239377 239378 239379 239380 239381 239382 239383 239384 239385 239386 239387 239388 239389 239390 239391 239392 239393 239394 239395 239396 239397 239398 239399 239400 239401 239402 239403 239404 239405 239406 239407 239408 239409 239410 239411 239412 239413 239414 239415 239416 239417 239418 239419 239420 239421 239422 239423 239424 239425 239426 239427 239428 239429 239430 239431 239432 239433 239434 | pLvl->nMerge = nInput; } fts5MultiIterFree(pIter); fts5BufferFree(&term); if( pnRem ) *pnRem -= writer.nLeafWritten; } /* ** If this is not a contentless_delete=1 table, or if the 'deletemerge' ** configuration option is set to 0, then this function always returns -1. ** Otherwise, it searches the structure object passed as the second argument ** for a level suitable for merging due to having a large number of ** tombstones in the tombstone hash. If one is found, its index is returned. ** Otherwise, if there is no suitable level, -1. */ static int fts5IndexFindDeleteMerge(Fts5Index *p, Fts5Structure *pStruct){ Fts5Config *pConfig = p->pConfig; int iRet = -1; if( pConfig->bContentlessDelete && pConfig->nDeleteMerge>0 ){ int ii; int nBest = 0; for(ii=0; ii<pStruct->nLevel; ii++){ Fts5StructureLevel *pLvl = &pStruct->aLevel[ii]; i64 nEntry = 0; i64 nTomb = 0; int iSeg; for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){ nEntry += pLvl->aSeg[iSeg].nEntry; nTomb += pLvl->aSeg[iSeg].nEntryTombstone; } assert_nc( nEntry>0 || pLvl->nSeg==0 ); if( nEntry>0 ){ int nPercent = (nTomb * 100) / nEntry; if( nPercent>=pConfig->nDeleteMerge && nPercent>nBest ){ iRet = ii; nBest = nPercent; } } } } return iRet; } /* ** Do up to nPg pages of automerge work on the index. ** ** Return true if any changes were actually made, or false otherwise. */ static int fts5IndexMerge( Fts5Index *p, /* FTS5 backend object */ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */ int nPg, /* Pages of work to do */ int nMin /* Minimum number of segments to merge */ ){ int nRem = nPg; int bRet = 0; Fts5Structure *pStruct = *ppStruct; while( nRem>0 && p->rc==SQLITE_OK ){ int iLvl; /* To iterate through levels */ int iBestLvl = 0; /* Level offering the most input segments */ int nBest = 0; /* Number of input segments on best level */ /* Set iBestLvl to the level to read input segments from. Or to -1 if ** there is no level suitable to merge segments from. */ assert( pStruct->nLevel>0 ); for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl]; if( pLvl->nMerge ){ if( pLvl->nMerge>nBest ){ iBestLvl = iLvl; nBest = nMin; } break; } if( pLvl->nSeg>nBest ){ nBest = pLvl->nSeg; iBestLvl = iLvl; } } if( nBest<nMin ){ iBestLvl = fts5IndexFindDeleteMerge(p, pStruct); } if( iBestLvl<0 ) break; bRet = 1; fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem); if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){ fts5StructurePromote(p, iBestLvl+1, pStruct); } if( nMin==1 ) nMin = 2; } *ppStruct = pStruct; return bRet; } /* ** A total of nLeaf leaf pages of data has just been flushed to a level-0 |
︙ | ︙ | |||
237012 237013 237014 237015 237016 237017 237018 | const u8 aEmpty[] = {0x00, 0x00, 0x00, 0x04}; assert_nc( bDetailNone==0 || pLeaf->nn==4 ); if( bDetailNone==0 ) fts5DataWrite(p, iRowid, aEmpty, sizeof(aEmpty)); fts5DataRelease(pLeaf); pLeaf = 0; }else if( bDetailNone ){ break; | | > > > > > < | 239586 239587 239588 239589 239590 239591 239592 239593 239594 239595 239596 239597 239598 239599 239600 239601 239602 239603 239604 239605 239606 239607 239608 239609 239610 239611 239612 239613 239614 239615 239616 239617 239618 239619 239620 239621 239622 239623 239624 239625 | const u8 aEmpty[] = {0x00, 0x00, 0x00, 0x04}; assert_nc( bDetailNone==0 || pLeaf->nn==4 ); if( bDetailNone==0 ) fts5DataWrite(p, iRowid, aEmpty, sizeof(aEmpty)); fts5DataRelease(pLeaf); pLeaf = 0; }else if( bDetailNone ){ break; }else if( iNext>=pLeaf->szLeaf || pLeaf->nn<pLeaf->szLeaf || iNext<4 ){ p->rc = FTS5_CORRUPT; break; }else{ int nShift = iNext - 4; int nPg; int nIdx = 0; u8 *aIdx = 0; /* Unless the current page footer is 0 bytes in size (in which case ** the new page footer will be as well), allocate and populate a ** buffer containing the new page footer. Set stack variables aIdx ** and nIdx accordingly. */ if( pLeaf->nn>pLeaf->szLeaf ){ int iFirst = 0; int i1 = pLeaf->szLeaf; int i2 = 0; i1 += fts5GetVarint32(&aPg[i1], iFirst); if( iFirst<iNext ){ p->rc = FTS5_CORRUPT; break; } aIdx = sqlite3Fts5MallocZero(&p->rc, (pLeaf->nn-pLeaf->szLeaf)+2); if( aIdx==0 ) break; i2 = sqlite3Fts5PutVarint(aIdx, iFirst-nShift); if( i1<pLeaf->nn ){ memcpy(&aIdx[i2], &aPg[i1], pLeaf->nn-i1); i2 += (pLeaf->nn-i1); } nIdx = i2; } |
︙ | ︙ | |||
237216 237217 237218 237219 237220 237221 237222 | if( (iKeyOff+nSuffix)>iPgIdx || (iNextOff+nSuffix2)>iPgIdx ){ p->rc = FTS5_CORRUPT; }else{ if( iKey!=1 ){ iOff += sqlite3Fts5PutVarint(&aPg[iOff], nPrefix); } iOff += sqlite3Fts5PutVarint(&aPg[iOff], nSuffix); | > > | | 239794 239795 239796 239797 239798 239799 239800 239801 239802 239803 239804 239805 239806 239807 239808 239809 239810 | if( (iKeyOff+nSuffix)>iPgIdx || (iNextOff+nSuffix2)>iPgIdx ){ p->rc = FTS5_CORRUPT; }else{ if( iKey!=1 ){ iOff += sqlite3Fts5PutVarint(&aPg[iOff], nPrefix); } iOff += sqlite3Fts5PutVarint(&aPg[iOff], nSuffix); if( nPrefix2>pSeg->term.n ){ p->rc = FTS5_CORRUPT; }else if( nPrefix2>nPrefix ){ memcpy(&aPg[iOff], &pSeg->term.p[nPrefix], nPrefix2-nPrefix); iOff += (nPrefix2-nPrefix); } memmove(&aPg[iOff], &aPg[iNextOff], nSuffix2); iOff += nSuffix2; iNextOff += nSuffix2; } |
︙ | ︙ | |||
237353 237354 237355 237356 237357 237358 237359 | Fts5Structure *pStruct; int iSegid; int pgnoLast = 0; /* Last leaf page number in segment */ /* Obtain a reference to the index structure and allocate a new segment-id ** for the new level-0 segment. */ pStruct = fts5StructureRead(p); | < > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > | | | | | | > | > | < > > | | | > | | | | > > > > > | 239933 239934 239935 239936 239937 239938 239939 239940 239941 239942 239943 239944 239945 239946 239947 239948 239949 239950 239951 239952 239953 239954 239955 239956 239957 239958 239959 239960 239961 239962 239963 239964 239965 239966 239967 239968 239969 239970 239971 239972 239973 239974 239975 239976 239977 239978 239979 239980 239981 239982 239983 239984 239985 239986 239987 239988 239989 239990 239991 239992 239993 239994 239995 239996 239997 239998 239999 240000 240001 240002 240003 240004 240005 240006 240007 240008 240009 240010 240011 240012 240013 240014 240015 240016 240017 240018 240019 240020 240021 240022 240023 240024 240025 240026 240027 240028 240029 240030 240031 240032 240033 240034 240035 240036 240037 240038 240039 240040 240041 240042 240043 240044 240045 240046 240047 240048 240049 240050 240051 240052 240053 240054 240055 240056 240057 240058 240059 240060 240061 240062 240063 240064 240065 240066 240067 240068 240069 240070 240071 240072 240073 240074 240075 240076 240077 240078 240079 240080 240081 240082 240083 240084 240085 240086 240087 240088 240089 240090 240091 240092 240093 240094 240095 240096 240097 240098 240099 240100 240101 240102 240103 240104 240105 240106 240107 240108 240109 240110 240111 240112 240113 240114 240115 240116 240117 240118 240119 240120 240121 240122 240123 240124 240125 240126 240127 240128 240129 240130 240131 240132 240133 240134 240135 240136 240137 240138 240139 240140 240141 240142 240143 240144 240145 240146 240147 240148 240149 240150 240151 240152 240153 240154 240155 240156 240157 240158 240159 240160 240161 240162 240163 240164 240165 240166 240167 240168 240169 240170 240171 240172 240173 240174 240175 240176 240177 240178 240179 240180 240181 240182 240183 240184 240185 240186 240187 240188 240189 240190 240191 240192 240193 240194 240195 | Fts5Structure *pStruct; int iSegid; int pgnoLast = 0; /* Last leaf page number in segment */ /* Obtain a reference to the index structure and allocate a new segment-id ** for the new level-0 segment. */ pStruct = fts5StructureRead(p); fts5StructureInvalidate(p); if( sqlite3Fts5HashIsEmpty(pHash)==0 ){ iSegid = fts5AllocateSegid(p, pStruct); if( iSegid ){ const int pgsz = p->pConfig->pgsz; int eDetail = p->pConfig->eDetail; int bSecureDelete = p->pConfig->bSecureDelete; Fts5StructureSegment *pSeg; /* New segment within pStruct */ Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */ Fts5Buffer *pPgidx; /* Buffer in which to assemble pgidx */ Fts5SegWriter writer; fts5WriteInit(p, &writer, iSegid); pBuf = &writer.writer.buf; pPgidx = &writer.writer.pgidx; /* fts5WriteInit() should have initialized the buffers to (most likely) ** the maximum space required. */ assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) ); assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) ); /* Begin scanning through hash table entries. This loop runs once for each ** term/doclist currently stored within the hash table. */ if( p->rc==SQLITE_OK ){ p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0); } while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){ const char *zTerm; /* Buffer containing term */ int nTerm; /* Size of zTerm in bytes */ const u8 *pDoclist; /* Pointer to doclist for this term */ int nDoclist; /* Size of doclist in bytes */ /* Get the term and doclist for this entry. */ sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist); nTerm = (int)strlen(zTerm); if( bSecureDelete==0 ){ fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm); if( p->rc!=SQLITE_OK ) break; assert( writer.bFirstRowidInPage==0 ); } if( !bSecureDelete && pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){ /* The entire doclist will fit on the current leaf. */ fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist); }else{ int bTermWritten = !bSecureDelete; i64 iRowid = 0; i64 iPrev = 0; int iOff = 0; /* The entire doclist will not fit on this leaf. The following ** loop iterates through the poslists that make up the current ** doclist. */ while( p->rc==SQLITE_OK && iOff<nDoclist ){ u64 iDelta = 0; iOff += fts5GetVarint(&pDoclist[iOff], &iDelta); iRowid += iDelta; /* If in secure delete mode, and if this entry in the poslist is ** in fact a delete, then edit the existing segments directly ** using fts5FlushSecureDelete(). */ if( bSecureDelete ){ if( eDetail==FTS5_DETAIL_NONE ){ if( iOff<nDoclist && pDoclist[iOff]==0x00 ){ fts5FlushSecureDelete(p, pStruct, zTerm, iRowid); iOff++; if( iOff<nDoclist && pDoclist[iOff]==0x00 ){ iOff++; nDoclist = 0; }else{ continue; } } }else if( (pDoclist[iOff] & 0x01) ){ fts5FlushSecureDelete(p, pStruct, zTerm, iRowid); if( p->rc!=SQLITE_OK || pDoclist[iOff]==0x01 ){ iOff++; continue; } } } if( p->rc==SQLITE_OK && bTermWritten==0 ){ fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm); bTermWritten = 1; assert( p->rc!=SQLITE_OK || writer.bFirstRowidInPage==0 ); } if( writer.bFirstRowidInPage ){ fts5PutU16(&pBuf->p[0], (u16)pBuf->n); /* first rowid on page */ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid); writer.bFirstRowidInPage = 0; fts5WriteDlidxAppend(p, &writer, iRowid); }else{ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid-iPrev); } if( p->rc!=SQLITE_OK ) break; assert( pBuf->n<=pBuf->nSpace ); iPrev = iRowid; if( eDetail==FTS5_DETAIL_NONE ){ if( iOff<nDoclist && pDoclist[iOff]==0 ){ pBuf->p[pBuf->n++] = 0; iOff++; if( iOff<nDoclist && pDoclist[iOff]==0 ){ pBuf->p[pBuf->n++] = 0; iOff++; } } if( (pBuf->n + pPgidx->n)>=pgsz ){ fts5WriteFlushLeaf(p, &writer); } }else{ int bDummy; int nPos; int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy); nCopy += nPos; if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){ /* The entire poslist will fit on the current leaf. So copy ** it in one go. */ fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy); }else{ /* The entire poslist will not fit on this leaf. So it needs ** to be broken into sections. The only qualification being ** that each varint must be stored contiguously. */ const u8 *pPoslist = &pDoclist[iOff]; int iPos = 0; while( p->rc==SQLITE_OK ){ int nSpace = pgsz - pBuf->n - pPgidx->n; int n = 0; if( (nCopy - iPos)<=nSpace ){ n = nCopy - iPos; }else{ n = fts5PoslistPrefix(&pPoslist[iPos], nSpace); } assert( n>0 ); fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n); iPos += n; if( (pBuf->n + pPgidx->n)>=pgsz ){ fts5WriteFlushLeaf(p, &writer); } if( iPos>=nCopy ) break; } } iOff += nCopy; } } } /* TODO2: Doclist terminator written here. */ /* pBuf->p[pBuf->n++] = '\0'; */ assert( pBuf->n<=pBuf->nSpace ); if( p->rc==SQLITE_OK ) sqlite3Fts5HashScanNext(pHash); } sqlite3Fts5HashClear(pHash); fts5WriteFinish(p, &writer, &pgnoLast); assert( p->rc!=SQLITE_OK || bSecureDelete || pgnoLast>0 ); if( pgnoLast>0 ){ /* Update the Fts5Structure. It is written back to the database by the ** fts5StructureRelease() call below. */ if( pStruct->nLevel==0 ){ fts5StructureAddLevel(&p->rc, &pStruct); } fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0); if( p->rc==SQLITE_OK ){ pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ]; pSeg->iSegid = iSegid; pSeg->pgnoFirst = 1; pSeg->pgnoLast = pgnoLast; if( pStruct->nOriginCntr>0 ){ pSeg->iOrigin1 = pStruct->nOriginCntr; pSeg->iOrigin2 = pStruct->nOriginCntr; pSeg->nEntry = p->nPendingRow; pStruct->nOriginCntr++; } pStruct->nSegment++; } fts5StructurePromote(p, 0, pStruct); } } } fts5IndexAutomerge(p, &pStruct, pgnoLast + p->nContentlessDelete); fts5IndexCrisismerge(p, &pStruct); fts5StructureWrite(p, pStruct); fts5StructureRelease(pStruct); p->nContentlessDelete = 0; } /* ** Flush any data stored in the in-memory hash tables to the database. */ static void fts5IndexFlush(Fts5Index *p){ /* Unless it is empty, flush the hash table to disk */ if( p->nPendingData || p->nContentlessDelete ){ assert( p->pHash ); fts5FlushOneHash(p); p->nPendingData = 0; p->nPendingRow = 0; } } static Fts5Structure *fts5IndexOptimizeStruct( Fts5Index *p, Fts5Structure *pStruct ){ Fts5Structure *pNew = 0; sqlite3_int64 nByte = sizeof(Fts5Structure); int nSeg = pStruct->nSegment; int i; /* Figure out if this structure requires optimization. A structure does ** not require optimization if either: ** ** 1. it consists of fewer than two segments, or ** 2. all segments are on the same level, or ** 3. all segments except one are currently inputs to a merge operation. ** ** In the first case, if there are no tombstone hash pages, return NULL. In ** the second, increment the ref-count on *pStruct and return a copy of the ** pointer to it. */ if( nSeg==0 ) return 0; for(i=0; i<pStruct->nLevel; i++){ int nThis = pStruct->aLevel[i].nSeg; int nMerge = pStruct->aLevel[i].nMerge; if( nThis>0 && (nThis==nSeg || (nThis==nSeg-1 && nMerge==nThis)) ){ if( nSeg==1 && nThis==1 && pStruct->aLevel[i].aSeg[0].nPgTombstone==0 ){ return 0; } fts5StructureRef(pStruct); return pStruct; } assert( pStruct->aLevel[i].nMerge<=nThis ); } nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel); pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte); if( pNew ){ Fts5StructureLevel *pLvl; nByte = nSeg * sizeof(Fts5StructureSegment); pNew->nLevel = MIN(pStruct->nLevel+1, FTS5_MAX_LEVEL); pNew->nRef = 1; pNew->nWriteCounter = pStruct->nWriteCounter; pNew->nOriginCntr = pStruct->nOriginCntr; pLvl = &pNew->aLevel[pNew->nLevel-1]; pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte); if( pLvl->aSeg ){ int iLvl, iSeg; int iSegOut = 0; /* Iterate through all segments, from oldest to newest. Add them to ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest |
︙ | ︙ | |||
237616 237617 237618 237619 237620 237621 237622 237623 237624 237625 237626 237627 237628 237629 | static int sqlite3Fts5IndexOptimize(Fts5Index *p){ Fts5Structure *pStruct; Fts5Structure *pNew = 0; assert( p->rc==SQLITE_OK ); fts5IndexFlush(p); pStruct = fts5StructureRead(p); fts5StructureInvalidate(p); if( pStruct ){ pNew = fts5IndexOptimizeStruct(p, pStruct); } fts5StructureRelease(pStruct); | > | 240212 240213 240214 240215 240216 240217 240218 240219 240220 240221 240222 240223 240224 240225 240226 | static int sqlite3Fts5IndexOptimize(Fts5Index *p){ Fts5Structure *pStruct; Fts5Structure *pNew = 0; assert( p->rc==SQLITE_OK ); fts5IndexFlush(p); assert( p->nContentlessDelete==0 ); pStruct = fts5StructureRead(p); fts5StructureInvalidate(p); if( pStruct ){ pNew = fts5IndexOptimizeStruct(p, pStruct); } fts5StructureRelease(pStruct); |
︙ | ︙ | |||
237645 237646 237647 237648 237649 237650 237651 | } /* ** This is called to implement the special "VALUES('merge', $nMerge)" ** INSERT command. */ static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){ | | > > > | | 240242 240243 240244 240245 240246 240247 240248 240249 240250 240251 240252 240253 240254 240255 240256 240257 240258 240259 240260 240261 240262 240263 240264 240265 240266 240267 | } /* ** This is called to implement the special "VALUES('merge', $nMerge)" ** INSERT command. */ static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){ Fts5Structure *pStruct = 0; fts5IndexFlush(p); pStruct = fts5StructureRead(p); if( pStruct ){ int nMin = p->pConfig->nUsermerge; fts5StructureInvalidate(p); if( nMerge<0 ){ Fts5Structure *pNew = fts5IndexOptimizeStruct(p, pStruct); fts5StructureRelease(pStruct); pStruct = pNew; nMin = 1; nMerge = nMerge*-1; } if( pStruct && pStruct->nLevel ){ if( fts5IndexMerge(p, &pStruct, nMerge, nMin) ){ fts5StructureWrite(p, pStruct); } } |
︙ | ︙ | |||
238167 238168 238169 238170 238171 238172 238173 238174 238175 238176 238177 238178 238179 238180 | || (p->nPendingData > p->pConfig->nHashSize) ){ fts5IndexFlush(p); } p->iWriteRowid = iRowid; p->bDelete = bDelete; return fts5IndexReturn(p); } /* ** Commit data to disk. */ static int sqlite3Fts5IndexSync(Fts5Index *p){ | > > > | 240767 240768 240769 240770 240771 240772 240773 240774 240775 240776 240777 240778 240779 240780 240781 240782 240783 | || (p->nPendingData > p->pConfig->nHashSize) ){ fts5IndexFlush(p); } p->iWriteRowid = iRowid; p->bDelete = bDelete; if( bDelete==0 ){ p->nPendingRow++; } return fts5IndexReturn(p); } /* ** Commit data to disk. */ static int sqlite3Fts5IndexSync(Fts5Index *p){ |
︙ | ︙ | |||
238204 238205 238206 238207 238208 238209 238210 238211 238212 238213 238214 238215 238216 238217 | ** and the initial version of the "averages" record (a zero-byte blob). */ static int sqlite3Fts5IndexReinit(Fts5Index *p){ Fts5Structure s; fts5StructureInvalidate(p); fts5IndexDiscardData(p); memset(&s, 0, sizeof(Fts5Structure)); fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0); fts5StructureWrite(p, &s); return fts5IndexReturn(p); } /* ** Open a new Fts5Index handle. If the bCreate argument is true, create | > > > | 240807 240808 240809 240810 240811 240812 240813 240814 240815 240816 240817 240818 240819 240820 240821 240822 240823 | ** and the initial version of the "averages" record (a zero-byte blob). */ static int sqlite3Fts5IndexReinit(Fts5Index *p){ Fts5Structure s; fts5StructureInvalidate(p); fts5IndexDiscardData(p); memset(&s, 0, sizeof(Fts5Structure)); if( p->pConfig->bContentlessDelete ){ s.nOriginCntr = 1; } fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0); fts5StructureWrite(p, &s); return fts5IndexReturn(p); } /* ** Open a new Fts5Index handle. If the bCreate argument is true, create |
︙ | ︙ | |||
238595 238596 238597 238598 238599 238600 238601 238602 238603 238604 238605 238606 238607 238608 | static int sqlite3Fts5IndexLoadConfig(Fts5Index *p){ Fts5Structure *pStruct; pStruct = fts5StructureRead(p); fts5StructureRelease(pStruct); return fts5IndexReturn(p); } /************************************************************************* ************************************************************************** ** Below this point is the implementation of the integrity-check ** functionality. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 241201 241202 241203 241204 241205 241206 241207 241208 241209 241210 241211 241212 241213 241214 241215 241216 241217 241218 241219 241220 241221 241222 241223 241224 241225 241226 241227 241228 241229 241230 241231 241232 241233 241234 241235 241236 241237 241238 241239 241240 241241 241242 241243 241244 241245 241246 241247 241248 241249 241250 241251 241252 241253 241254 241255 241256 241257 241258 241259 241260 241261 241262 241263 241264 241265 241266 241267 241268 241269 241270 241271 241272 241273 241274 241275 241276 241277 241278 241279 241280 241281 241282 241283 241284 241285 241286 241287 241288 241289 241290 241291 241292 241293 241294 241295 241296 241297 241298 241299 241300 241301 241302 241303 241304 241305 241306 241307 241308 241309 241310 241311 241312 241313 241314 241315 241316 241317 241318 241319 241320 241321 241322 241323 241324 241325 241326 241327 241328 241329 241330 241331 241332 241333 241334 241335 241336 241337 241338 241339 241340 241341 241342 241343 241344 241345 241346 241347 241348 241349 241350 241351 241352 241353 241354 241355 241356 241357 241358 241359 241360 241361 241362 241363 241364 241365 241366 241367 241368 241369 241370 241371 241372 241373 241374 241375 241376 241377 241378 241379 241380 241381 241382 241383 241384 241385 241386 241387 241388 241389 241390 241391 241392 241393 241394 241395 241396 241397 241398 241399 241400 241401 241402 241403 241404 241405 241406 241407 241408 241409 241410 241411 241412 241413 241414 241415 241416 241417 241418 241419 241420 241421 241422 241423 241424 241425 241426 241427 241428 241429 241430 241431 241432 241433 241434 241435 241436 241437 241438 241439 241440 241441 241442 241443 241444 241445 241446 241447 241448 241449 241450 241451 241452 241453 241454 241455 241456 241457 241458 241459 241460 241461 241462 241463 241464 241465 241466 241467 241468 241469 241470 241471 241472 241473 241474 241475 241476 241477 241478 241479 241480 241481 241482 241483 241484 241485 241486 241487 241488 241489 241490 241491 241492 241493 241494 241495 241496 241497 241498 241499 241500 241501 241502 241503 241504 241505 241506 241507 241508 241509 241510 241511 241512 241513 241514 241515 241516 241517 241518 241519 241520 241521 241522 241523 241524 241525 241526 241527 241528 241529 241530 241531 241532 241533 241534 241535 241536 241537 241538 241539 241540 241541 241542 241543 241544 241545 241546 241547 241548 241549 241550 241551 241552 241553 241554 241555 | static int sqlite3Fts5IndexLoadConfig(Fts5Index *p){ Fts5Structure *pStruct; pStruct = fts5StructureRead(p); fts5StructureRelease(pStruct); return fts5IndexReturn(p); } /* ** Retrieve the origin value that will be used for the segment currently ** being accumulated in the in-memory hash table when it is flushed to ** disk. If successful, SQLITE_OK is returned and (*piOrigin) set to ** the queried value. Or, if an error occurs, an error code is returned ** and the final value of (*piOrigin) is undefined. */ static int sqlite3Fts5IndexGetOrigin(Fts5Index *p, i64 *piOrigin){ Fts5Structure *pStruct; pStruct = fts5StructureRead(p); if( pStruct ){ *piOrigin = pStruct->nOriginCntr; fts5StructureRelease(pStruct); } return fts5IndexReturn(p); } /* ** Buffer pPg contains a page of a tombstone hash table - one of nPg pages ** associated with the same segment. This function adds rowid iRowid to ** the hash table. The caller is required to guarantee that there is at ** least one free slot on the page. ** ** If parameter bForce is false and the hash table is deemed to be full ** (more than half of the slots are occupied), then non-zero is returned ** and iRowid not inserted. Or, if bForce is true or if the hash table page ** is not full, iRowid is inserted and zero returned. */ static int fts5IndexTombstoneAddToPage( Fts5Data *pPg, int bForce, int nPg, u64 iRowid ){ const int szKey = TOMBSTONE_KEYSIZE(pPg); const int nSlot = TOMBSTONE_NSLOT(pPg); const int nElem = fts5GetU32(&pPg->p[4]); int iSlot = (iRowid / nPg) % nSlot; int nCollide = nSlot; if( szKey==4 && iRowid>0xFFFFFFFF ) return 2; if( iRowid==0 ){ pPg->p[1] = 0x01; return 0; } if( bForce==0 && nElem>=(nSlot/2) ){ return 1; } fts5PutU32(&pPg->p[4], nElem+1); if( szKey==4 ){ u32 *aSlot = (u32*)&pPg->p[8]; while( aSlot[iSlot] ){ iSlot = (iSlot + 1) % nSlot; if( nCollide--==0 ) return 0; } fts5PutU32((u8*)&aSlot[iSlot], (u32)iRowid); }else{ u64 *aSlot = (u64*)&pPg->p[8]; while( aSlot[iSlot] ){ iSlot = (iSlot + 1) % nSlot; if( nCollide--==0 ) return 0; } fts5PutU64((u8*)&aSlot[iSlot], iRowid); } return 0; } /* ** This function attempts to build a new hash containing all the keys ** currently in the tombstone hash table for segment pSeg. The new ** hash will be stored in the nOut buffers passed in array apOut[]. ** All pages of the new hash use key-size szKey (4 or 8). ** ** Return 0 if the hash is successfully rebuilt into the nOut pages. ** Or non-zero if it is not (because one page became overfull). In this ** case the caller should retry with a larger nOut parameter. ** ** Parameter pData1 is page iPg1 of the hash table being rebuilt. */ static int fts5IndexTombstoneRehash( Fts5Index *p, Fts5StructureSegment *pSeg, /* Segment to rebuild hash of */ Fts5Data *pData1, /* One page of current hash - or NULL */ int iPg1, /* Which page of the current hash is pData1 */ int szKey, /* 4 or 8, the keysize */ int nOut, /* Number of output pages */ Fts5Data **apOut /* Array of output hash pages */ ){ int ii; int res = 0; /* Initialize the headers of all the output pages */ for(ii=0; ii<nOut; ii++){ apOut[ii]->p[0] = szKey; fts5PutU32(&apOut[ii]->p[4], 0); } /* Loop through the current pages of the hash table. */ for(ii=0; res==0 && ii<pSeg->nPgTombstone; ii++){ Fts5Data *pData = 0; /* Page ii of the current hash table */ Fts5Data *pFree = 0; /* Free this at the end of the loop */ if( iPg1==ii ){ pData = pData1; }else{ pFree = pData = fts5DataRead(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid, ii)); } if( pData ){ int szKeyIn = TOMBSTONE_KEYSIZE(pData); int nSlotIn = (pData->nn - 8) / szKeyIn; int iIn; for(iIn=0; iIn<nSlotIn; iIn++){ u64 iVal = 0; /* Read the value from slot iIn of the input page into iVal. */ if( szKeyIn==4 ){ u32 *aSlot = (u32*)&pData->p[8]; if( aSlot[iIn] ) iVal = fts5GetU32((u8*)&aSlot[iIn]); }else{ u64 *aSlot = (u64*)&pData->p[8]; if( aSlot[iIn] ) iVal = fts5GetU64((u8*)&aSlot[iIn]); } /* If iVal is not 0 at this point, insert it into the new hash table */ if( iVal ){ Fts5Data *pPg = apOut[(iVal % nOut)]; res = fts5IndexTombstoneAddToPage(pPg, 0, nOut, iVal); if( res ) break; } } /* If this is page 0 of the old hash, copy the rowid-0-flag from the ** old hash to the new. */ if( ii==0 ){ apOut[0]->p[1] = pData->p[1]; } } fts5DataRelease(pFree); } return res; } /* ** This is called to rebuild the hash table belonging to segment pSeg. ** If parameter pData1 is not NULL, then one page of the existing hash table ** has already been loaded - pData1, which is page iPg1. The key-size for ** the new hash table is szKey (4 or 8). ** ** If successful, the new hash table is not written to disk. Instead, ** output parameter (*pnOut) is set to the number of pages in the new ** hash table, and (*papOut) to point to an array of buffers containing ** the new page data. ** ** If an error occurs, an error code is left in the Fts5Index object and ** both output parameters set to 0 before returning. */ static void fts5IndexTombstoneRebuild( Fts5Index *p, Fts5StructureSegment *pSeg, /* Segment to rebuild hash of */ Fts5Data *pData1, /* One page of current hash - or NULL */ int iPg1, /* Which page of the current hash is pData1 */ int szKey, /* 4 or 8, the keysize */ int *pnOut, /* OUT: Number of output pages */ Fts5Data ***papOut /* OUT: Output hash pages */ ){ const int MINSLOT = 32; int nSlotPerPage = MAX(MINSLOT, (p->pConfig->pgsz - 8) / szKey); int nSlot = 0; /* Number of slots in each output page */ int nOut = 0; /* Figure out how many output pages (nOut) and how many slots per ** page (nSlot). There are three possibilities: ** ** 1. The hash table does not yet exist. In this case the new hash ** table will consist of a single page with MINSLOT slots. ** ** 2. The hash table exists but is currently a single page. In this ** case an attempt is made to grow the page to accommodate the new ** entry. The page is allowed to grow up to nSlotPerPage (see above) ** slots. ** ** 3. The hash table already consists of more than one page, or of ** a single page already so large that it cannot be grown. In this ** case the new hash consists of (nPg*2+1) pages of nSlotPerPage ** slots each, where nPg is the current number of pages in the ** hash table. */ if( pSeg->nPgTombstone==0 ){ /* Case 1. */ nOut = 1; nSlot = MINSLOT; }else if( pSeg->nPgTombstone==1 ){ /* Case 2. */ int nElem = (int)fts5GetU32(&pData1->p[4]); assert( pData1 && iPg1==0 ); nOut = 1; nSlot = MAX(nElem*4, MINSLOT); if( nSlot>nSlotPerPage ) nOut = 0; } if( nOut==0 ){ /* Case 3. */ nOut = (pSeg->nPgTombstone * 2 + 1); nSlot = nSlotPerPage; } /* Allocate the required array and output pages */ while( 1 ){ int res = 0; int ii = 0; int szPage = 0; Fts5Data **apOut = 0; /* Allocate space for the new hash table */ assert( nSlot>=MINSLOT ); apOut = (Fts5Data**)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data*) * nOut); szPage = 8 + nSlot*szKey; for(ii=0; ii<nOut; ii++){ Fts5Data *pNew = (Fts5Data*)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data)+szPage ); if( pNew ){ pNew->nn = szPage; pNew->p = (u8*)&pNew[1]; apOut[ii] = pNew; } } /* Rebuild the hash table. */ if( p->rc==SQLITE_OK ){ res = fts5IndexTombstoneRehash(p, pSeg, pData1, iPg1, szKey, nOut, apOut); } if( res==0 ){ if( p->rc ){ fts5IndexFreeArray(apOut, nOut); apOut = 0; nOut = 0; } *pnOut = nOut; *papOut = apOut; break; } /* If control flows to here, it was not possible to rebuild the hash ** table. Free all buffers and then try again with more pages. */ assert( p->rc==SQLITE_OK ); fts5IndexFreeArray(apOut, nOut); nSlot = nSlotPerPage; nOut = nOut*2 + 1; } } /* ** Add a tombstone for rowid iRowid to segment pSeg. */ static void fts5IndexTombstoneAdd( Fts5Index *p, Fts5StructureSegment *pSeg, u64 iRowid ){ Fts5Data *pPg = 0; int iPg = -1; int szKey = 0; int nHash = 0; Fts5Data **apHash = 0; p->nContentlessDelete++; if( pSeg->nPgTombstone>0 ){ iPg = iRowid % pSeg->nPgTombstone; pPg = fts5DataRead(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid,iPg)); if( pPg==0 ){ assert( p->rc!=SQLITE_OK ); return; } if( 0==fts5IndexTombstoneAddToPage(pPg, 0, pSeg->nPgTombstone, iRowid) ){ fts5DataWrite(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid,iPg), pPg->p, pPg->nn); fts5DataRelease(pPg); return; } } /* Have to rebuild the hash table. First figure out the key-size (4 or 8). */ szKey = pPg ? TOMBSTONE_KEYSIZE(pPg) : 4; if( iRowid>0xFFFFFFFF ) szKey = 8; /* Rebuild the hash table */ fts5IndexTombstoneRebuild(p, pSeg, pPg, iPg, szKey, &nHash, &apHash); assert( p->rc==SQLITE_OK || (nHash==0 && apHash==0) ); /* If all has succeeded, write the new rowid into one of the new hash ** table pages, then write them all out to disk. */ if( nHash ){ int ii = 0; fts5IndexTombstoneAddToPage(apHash[iRowid % nHash], 1, nHash, iRowid); for(ii=0; ii<nHash; ii++){ i64 iTombstoneRowid = FTS5_TOMBSTONE_ROWID(pSeg->iSegid, ii); fts5DataWrite(p, iTombstoneRowid, apHash[ii]->p, apHash[ii]->nn); } pSeg->nPgTombstone = nHash; fts5StructureWrite(p, p->pStruct); } fts5DataRelease(pPg); fts5IndexFreeArray(apHash, nHash); } /* ** Add iRowid to the tombstone list of the segment or segments that contain ** rows from origin iOrigin. Return SQLITE_OK if successful, or an SQLite ** error code otherwise. */ static int sqlite3Fts5IndexContentlessDelete(Fts5Index *p, i64 iOrigin, i64 iRowid){ Fts5Structure *pStruct; pStruct = fts5StructureRead(p); if( pStruct ){ int bFound = 0; /* True after pSeg->nEntryTombstone incr. */ int iLvl; for(iLvl=pStruct->nLevel-1; iLvl>=0; iLvl--){ int iSeg; for(iSeg=pStruct->aLevel[iLvl].nSeg-1; iSeg>=0; iSeg--){ Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg]; if( pSeg->iOrigin1<=(u64)iOrigin && pSeg->iOrigin2>=(u64)iOrigin ){ if( bFound==0 ){ pSeg->nEntryTombstone++; bFound = 1; } fts5IndexTombstoneAdd(p, pSeg, iRowid); } } } fts5StructureRelease(pStruct); } return fts5IndexReturn(p); } /************************************************************************* ************************************************************************** ** Below this point is the implementation of the integrity-check ** functionality. */ |
︙ | ︙ | |||
239146 239147 239148 239149 239150 239151 239152 | /************************************************************************* ************************************************************************** ** Below this point is the implementation of the fts5_decode() scalar ** function only. */ | | > > | > > | | | | | | > > | | | > > > > > > | | | 242093 242094 242095 242096 242097 242098 242099 242100 242101 242102 242103 242104 242105 242106 242107 242108 242109 242110 242111 242112 242113 242114 242115 242116 242117 242118 242119 242120 242121 242122 242123 242124 242125 242126 242127 242128 242129 242130 242131 242132 242133 242134 242135 242136 242137 242138 242139 242140 242141 242142 242143 242144 242145 242146 242147 242148 242149 242150 242151 242152 242153 242154 242155 242156 242157 242158 242159 242160 242161 242162 242163 242164 242165 242166 242167 242168 242169 242170 242171 242172 242173 242174 242175 242176 242177 242178 242179 242180 242181 242182 242183 242184 242185 242186 242187 242188 | /************************************************************************* ************************************************************************** ** Below this point is the implementation of the fts5_decode() scalar ** function only. */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** Decode a segment-data rowid from the %_data table. This function is ** the opposite of macro FTS5_SEGMENT_ROWID(). */ static void fts5DecodeRowid( i64 iRowid, /* Rowid from %_data table */ int *pbTombstone, /* OUT: Tombstone hash flag */ int *piSegid, /* OUT: Segment id */ int *pbDlidx, /* OUT: Dlidx flag */ int *piHeight, /* OUT: Height */ int *piPgno /* OUT: Page number */ ){ *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1)); iRowid >>= FTS5_DATA_PAGE_B; *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1)); iRowid >>= FTS5_DATA_HEIGHT_B; *pbDlidx = (int)(iRowid & 0x0001); iRowid >>= FTS5_DATA_DLI_B; *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1)); iRowid >>= FTS5_DATA_ID_B; *pbTombstone = (int)(iRowid & 0x0001); } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){ int iSegid, iHeight, iPgno, bDlidx, bTomb; /* Rowid compenents */ fts5DecodeRowid(iKey, &bTomb, &iSegid, &bDlidx, &iHeight, &iPgno); if( iSegid==0 ){ if( iKey==FTS5_AVERAGES_ROWID ){ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} "); }else{ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}"); } } else{ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%s%ssegid=%d h=%d pgno=%d}", bDlidx ? "dlidx " : "", bTomb ? "tombstone " : "", iSegid, iHeight, iPgno ); } } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) static void fts5DebugStructure( int *pRc, /* IN/OUT: error code */ Fts5Buffer *pBuf, Fts5Structure *p ){ int iLvl, iSeg; /* Iterate through levels, segments */ for(iLvl=0; iLvl<p->nLevel; iLvl++){ Fts5StructureLevel *pLvl = &p->aLevel[iLvl]; sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg ); for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg]; sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d", pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast ); if( pSeg->iOrigin1>0 ){ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " origin=%lld..%lld", pSeg->iOrigin1, pSeg->iOrigin2 ); } sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}"); } sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}"); } } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** This is part of the fts5_decode() debugging aid. ** ** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This ** function appends a human-readable representation of the same object ** to the buffer passed as the second argument. */ |
︙ | ︙ | |||
239240 239241 239242 239243 239244 239245 239246 | *pRc = rc; return; } fts5DebugStructure(pRc, pBuf, p); fts5StructureRelease(p); } | | | | 242199 242200 242201 242202 242203 242204 242205 242206 242207 242208 242209 242210 242211 242212 242213 242214 242215 | *pRc = rc; return; } fts5DebugStructure(pRc, pBuf, p); fts5StructureRelease(p); } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** This is part of the fts5_decode() debugging aid. ** ** Arguments pBlob/nBlob contain an "averages" record. This function ** appends a human-readable representation of record to the buffer passed ** as the second argument. */ |
︙ | ︙ | |||
239265 239266 239267 239268 239269 239270 239271 | while( i<nBlob ){ u64 iVal; i += sqlite3Fts5GetVarint(&pBlob[i], &iVal); sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal); zSpace = " "; } } | | | | | | 242224 242225 242226 242227 242228 242229 242230 242231 242232 242233 242234 242235 242236 242237 242238 242239 242240 242241 242242 242243 242244 242245 242246 242247 242248 242249 242250 242251 242252 242253 242254 242255 242256 242257 242258 242259 | while( i<nBlob ){ u64 iVal; i += sqlite3Fts5GetVarint(&pBlob[i], &iVal); sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal); zSpace = " "; } } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** Buffer (a/n) is assumed to contain a list of serialized varints. Read ** each varint and append its string representation to buffer pBuf. Return ** after either the input buffer is exhausted or a 0 value is read. ** ** The return value is the number of bytes read from the input buffer. */ static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){ int iOff = 0; while( iOff<n ){ int iVal; iOff += fts5GetVarint32(&a[iOff], iVal); sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal); } return iOff; } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** The start of buffer (a/n) contains the start of a doclist. The doclist ** may or may not finish within the buffer. This function appends a text ** representation of the part of the doclist that is present to buffer ** pBuf. ** ** The return value is the number of bytes read from the input buffer. |
︙ | ︙ | |||
239319 239320 239321 239322 239323 239324 239325 | iDocid += iDelta; sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid); } } return iOff; } | | | | 242278 242279 242280 242281 242282 242283 242284 242285 242286 242287 242288 242289 242290 242291 242292 242293 242294 | iDocid += iDelta; sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid); } } return iOff; } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** This function is part of the fts5_decode() debugging function. It is ** only ever used with detail=none tables. ** ** Buffer (pData/nData) contains a doclist in the format used by detail=none ** tables. This function appends a human-readable version of that list to ** buffer pBuf. |
︙ | ︙ | |||
239362 239363 239364 239365 239366 239367 239368 | zApp = "*"; } } sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp); } } | | | > | 242321 242322 242323 242324 242325 242326 242327 242328 242329 242330 242331 242332 242333 242334 242335 242336 242337 242338 242339 242340 242341 242342 242343 242344 242345 242346 242347 242348 | zApp = "*"; } } sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp); } } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** The implementation of user-defined scalar function fts5_decode(). */ static void fts5DecodeFunction( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args (always 2) */ sqlite3_value **apVal /* Function arguments */ ){ i64 iRowid; /* Rowid for record being decoded */ int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */ int bTomb; const u8 *aBlob; int n; /* Record to decode */ u8 *a = 0; Fts5Buffer s; /* Build up text to return here */ int rc = SQLITE_OK; /* Return code */ sqlite3_int64 nSpace = 0; int eDetailNone = (sqlite3_user_data(pCtx)!=0); |
︙ | ︙ | |||
239397 239398 239399 239400 239401 239402 239403 | n = sqlite3_value_bytes(apVal[1]); aBlob = sqlite3_value_blob(apVal[1]); nSpace = n + FTS5_DATA_ZERO_PADDING; a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace); if( a==0 ) goto decode_out; if( n>0 ) memcpy(a, aBlob, n); | | > > > > > > > > > > > > > > > > > > > > > > | 242357 242358 242359 242360 242361 242362 242363 242364 242365 242366 242367 242368 242369 242370 242371 242372 242373 242374 242375 242376 242377 242378 242379 242380 242381 242382 242383 242384 242385 242386 242387 242388 242389 242390 242391 242392 242393 242394 242395 242396 242397 242398 242399 242400 242401 242402 242403 242404 242405 242406 242407 242408 242409 242410 | n = sqlite3_value_bytes(apVal[1]); aBlob = sqlite3_value_blob(apVal[1]); nSpace = n + FTS5_DATA_ZERO_PADDING; a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace); if( a==0 ) goto decode_out; if( n>0 ) memcpy(a, aBlob, n); fts5DecodeRowid(iRowid, &bTomb, &iSegid, &bDlidx, &iHeight, &iPgno); fts5DebugRowid(&rc, &s, iRowid); if( bDlidx ){ Fts5Data dlidx; Fts5DlidxLvl lvl; dlidx.p = a; dlidx.nn = n; memset(&lvl, 0, sizeof(Fts5DlidxLvl)); lvl.pData = &dlidx; lvl.iLeafPgno = iPgno; for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){ sqlite3Fts5BufferAppendPrintf(&rc, &s, " %d(%lld)", lvl.iLeafPgno, lvl.iRowid ); } }else if( bTomb ){ u32 nElem = fts5GetU32(&a[4]); int szKey = (aBlob[0]==4 || aBlob[0]==8) ? aBlob[0] : 8; int nSlot = (n - 8) / szKey; int ii; sqlite3Fts5BufferAppendPrintf(&rc, &s, " nElem=%d", (int)nElem); if( aBlob[1] ){ sqlite3Fts5BufferAppendPrintf(&rc, &s, " 0"); } for(ii=0; ii<nSlot; ii++){ u64 iVal = 0; if( szKey==4 ){ u32 *aSlot = (u32*)&aBlob[8]; if( aSlot[ii] ) iVal = fts5GetU32((u8*)&aSlot[ii]); }else{ u64 *aSlot = (u64*)&aBlob[8]; if( aSlot[ii] ) iVal = fts5GetU64((u8*)&aSlot[ii]); } if( iVal!=0 ){ sqlite3Fts5BufferAppendPrintf(&rc, &s, " %lld", (i64)iVal); } } }else if( iSegid==0 ){ if( iRowid==FTS5_AVERAGES_ROWID ){ fts5DecodeAverages(&rc, &s, a, n); }else{ fts5DecodeStructure(&rc, &s, a, n); } |
︙ | ︙ | |||
239441 239442 239443 239444 239445 239446 239447 | iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff); }else{ iTermOff = szLeaf; } fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4); iOff = iTermOff; | | | > > | > | 242423 242424 242425 242426 242427 242428 242429 242430 242431 242432 242433 242434 242435 242436 242437 242438 242439 242440 242441 242442 242443 242444 242445 242446 242447 242448 242449 242450 242451 242452 242453 242454 242455 242456 242457 242458 242459 242460 242461 | iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff); }else{ iTermOff = szLeaf; } fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4); iOff = iTermOff; while( iOff<szLeaf && rc==SQLITE_OK ){ int nAppend; /* Read the term data for the next term*/ iOff += fts5GetVarint32(&a[iOff], nAppend); term.n = nKeep; fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]); sqlite3Fts5BufferAppendPrintf( &rc, &s, " term=%.*s", term.n, (const char*)term.p ); iOff += nAppend; /* Figure out where the doclist for this term ends */ if( iPgidxOff<n ){ int nIncr; iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr); iTermOff += nIncr; }else{ iTermOff = szLeaf; } if( iTermOff>szLeaf ){ rc = FTS5_CORRUPT; }else{ fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff); } iOff = iTermOff; if( iOff<szLeaf ){ iOff += fts5GetVarint32(&a[iOff], nKeep); } } fts5BufferFree(&term); |
︙ | ︙ | |||
239573 239574 239575 239576 239577 239578 239579 | if( rc==SQLITE_OK ){ sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT); }else{ sqlite3_result_error_code(pCtx, rc); } fts5BufferFree(&s); } | | | | 242558 242559 242560 242561 242562 242563 242564 242565 242566 242567 242568 242569 242570 242571 242572 242573 242574 | if( rc==SQLITE_OK ){ sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT); }else{ sqlite3_result_error_code(pCtx, rc); } fts5BufferFree(&s); } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) /* ** The implementation of user-defined scalar function fts5_rowid(). */ static void fts5RowidFunction( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args (always 2) */ sqlite3_value **apVal /* Function arguments */ |
︙ | ︙ | |||
239609 239610 239611 239612 239613 239614 239615 | }else{ sqlite3_result_error(pCtx, "first arg to fts5_rowid() must be 'segment'" , -1 ); } } } | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 242594 242595 242596 242597 242598 242599 242600 242601 242602 242603 242604 242605 242606 242607 242608 242609 242610 242611 242612 242613 242614 242615 242616 242617 242618 242619 242620 242621 242622 242623 242624 242625 242626 242627 242628 242629 242630 242631 242632 242633 242634 242635 242636 242637 242638 242639 242640 242641 242642 242643 242644 242645 242646 242647 242648 242649 242650 242651 242652 242653 242654 242655 242656 242657 242658 242659 242660 242661 242662 242663 242664 242665 242666 242667 242668 242669 242670 242671 242672 242673 242674 242675 242676 242677 242678 242679 242680 242681 242682 242683 242684 242685 242686 242687 242688 242689 242690 242691 242692 242693 242694 242695 242696 242697 242698 242699 242700 242701 242702 242703 242704 242705 242706 242707 242708 242709 242710 242711 242712 242713 242714 242715 242716 242717 242718 242719 242720 242721 242722 242723 242724 242725 242726 242727 242728 242729 242730 242731 242732 242733 242734 242735 242736 242737 242738 242739 242740 242741 242742 242743 242744 242745 242746 242747 242748 242749 242750 242751 242752 242753 242754 242755 242756 242757 242758 242759 242760 242761 242762 242763 242764 242765 242766 242767 242768 242769 242770 242771 242772 242773 242774 242775 242776 242777 242778 242779 242780 242781 242782 242783 242784 242785 242786 242787 242788 242789 242790 242791 242792 242793 242794 242795 242796 242797 242798 242799 242800 242801 242802 242803 242804 242805 242806 242807 242808 242809 242810 242811 242812 242813 242814 242815 242816 242817 242818 242819 242820 242821 242822 242823 242824 242825 242826 242827 242828 242829 242830 242831 242832 242833 242834 242835 242836 242837 242838 242839 242840 242841 242842 242843 242844 242845 242846 242847 242848 242849 242850 242851 242852 242853 242854 242855 242856 242857 242858 242859 242860 242861 242862 242863 242864 242865 242866 242867 242868 242869 242870 242871 242872 242873 242874 242875 242876 242877 242878 242879 242880 242881 242882 242883 242884 242885 242886 242887 242888 242889 242890 242891 242892 242893 | }else{ sqlite3_result_error(pCtx, "first arg to fts5_rowid() must be 'segment'" , -1 ); } } } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) typedef struct Fts5StructVtab Fts5StructVtab; struct Fts5StructVtab { sqlite3_vtab base; }; typedef struct Fts5StructVcsr Fts5StructVcsr; struct Fts5StructVcsr { sqlite3_vtab_cursor base; Fts5Structure *pStruct; int iLevel; int iSeg; int iRowid; }; /* ** Create a new fts5_structure() table-valued function. */ static int fts5structConnectMethod( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ Fts5StructVtab *pNew = 0; int rc = SQLITE_OK; rc = sqlite3_declare_vtab(db, "CREATE TABLE xyz(" "level, segment, merge, segid, leaf1, leaf2, loc1, loc2, " "npgtombstone, nentrytombstone, nentry, struct HIDDEN);" ); if( rc==SQLITE_OK ){ pNew = sqlite3Fts5MallocZero(&rc, sizeof(*pNew)); } *ppVtab = (sqlite3_vtab*)pNew; return rc; } /* ** We must have a single struct=? constraint that will be passed through ** into the xFilter method. If there is no valid stmt=? constraint, ** then return an SQLITE_CONSTRAINT error. */ static int fts5structBestIndexMethod( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; int rc = SQLITE_CONSTRAINT; struct sqlite3_index_constraint *p; pIdxInfo->estimatedCost = (double)100; pIdxInfo->estimatedRows = 100; pIdxInfo->idxNum = 0; for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){ if( p->usable==0 ) continue; if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==11 ){ rc = SQLITE_OK; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->aConstraintUsage[i].argvIndex = 1; break; } } return rc; } /* ** This method is the destructor for bytecodevtab objects. */ static int fts5structDisconnectMethod(sqlite3_vtab *pVtab){ Fts5StructVtab *p = (Fts5StructVtab*)pVtab; sqlite3_free(p); return SQLITE_OK; } /* ** Constructor for a new bytecodevtab_cursor object. */ static int fts5structOpenMethod(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCsr){ int rc = SQLITE_OK; Fts5StructVcsr *pNew = 0; pNew = sqlite3Fts5MallocZero(&rc, sizeof(*pNew)); *ppCsr = (sqlite3_vtab_cursor*)pNew; return SQLITE_OK; } /* ** Destructor for a bytecodevtab_cursor. */ static int fts5structCloseMethod(sqlite3_vtab_cursor *cur){ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur; fts5StructureRelease(pCsr->pStruct); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Advance a bytecodevtab_cursor to its next row of output. */ static int fts5structNextMethod(sqlite3_vtab_cursor *cur){ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur; Fts5Structure *p = pCsr->pStruct; assert( pCsr->pStruct ); pCsr->iSeg++; pCsr->iRowid++; while( pCsr->iLevel<p->nLevel && pCsr->iSeg>=p->aLevel[pCsr->iLevel].nSeg ){ pCsr->iLevel++; pCsr->iSeg = 0; } if( pCsr->iLevel>=p->nLevel ){ fts5StructureRelease(pCsr->pStruct); pCsr->pStruct = 0; } return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int fts5structEofMethod(sqlite3_vtab_cursor *cur){ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur; return pCsr->pStruct==0; } static int fts5structRowidMethod( sqlite3_vtab_cursor *cur, sqlite_int64 *piRowid ){ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur; *piRowid = pCsr->iRowid; return SQLITE_OK; } /* ** Return values of columns for the row at which the bytecodevtab_cursor ** is currently pointing. */ static int fts5structColumnMethod( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur; Fts5Structure *p = pCsr->pStruct; Fts5StructureSegment *pSeg = &p->aLevel[pCsr->iLevel].aSeg[pCsr->iSeg]; switch( i ){ case 0: /* level */ sqlite3_result_int(ctx, pCsr->iLevel); break; case 1: /* segment */ sqlite3_result_int(ctx, pCsr->iSeg); break; case 2: /* merge */ sqlite3_result_int(ctx, pCsr->iSeg < p->aLevel[pCsr->iLevel].nMerge); break; case 3: /* segid */ sqlite3_result_int(ctx, pSeg->iSegid); break; case 4: /* leaf1 */ sqlite3_result_int(ctx, pSeg->pgnoFirst); break; case 5: /* leaf2 */ sqlite3_result_int(ctx, pSeg->pgnoLast); break; case 6: /* origin1 */ sqlite3_result_int64(ctx, pSeg->iOrigin1); break; case 7: /* origin2 */ sqlite3_result_int64(ctx, pSeg->iOrigin2); break; case 8: /* npgtombstone */ sqlite3_result_int(ctx, pSeg->nPgTombstone); break; case 9: /* nentrytombstone */ sqlite3_result_int64(ctx, pSeg->nEntryTombstone); break; case 10: /* nentry */ sqlite3_result_int64(ctx, pSeg->nEntry); break; } return SQLITE_OK; } /* ** Initialize a cursor. ** ** idxNum==0 means show all subprograms ** idxNum==1 means show only the main bytecode and omit subprograms. */ static int fts5structFilterMethod( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Fts5StructVcsr *pCsr = (Fts5StructVcsr *)pVtabCursor; int rc = SQLITE_OK; const u8 *aBlob = 0; int nBlob = 0; assert( argc==1 ); fts5StructureRelease(pCsr->pStruct); pCsr->pStruct = 0; nBlob = sqlite3_value_bytes(argv[0]); aBlob = (const u8*)sqlite3_value_blob(argv[0]); rc = fts5StructureDecode(aBlob, nBlob, 0, &pCsr->pStruct); if( rc==SQLITE_OK ){ pCsr->iLevel = 0; pCsr->iRowid = 0; pCsr->iSeg = -1; rc = fts5structNextMethod(pVtabCursor); } return rc; } #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */ /* ** This is called as part of registering the FTS5 module with database ** connection db. It registers several user-defined scalar functions useful ** with FTS5. ** ** If successful, SQLITE_OK is returned. If an error occurs, some other ** SQLite error code is returned instead. */ static int sqlite3Fts5IndexInit(sqlite3 *db){ #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) int rc = sqlite3_create_function( db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0 ); if( rc==SQLITE_OK ){ rc = sqlite3_create_function( db, "fts5_decode_none", 2, SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0 ); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function( db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0 ); } if( rc==SQLITE_OK ){ static const sqlite3_module fts5structure_module = { 0, /* iVersion */ 0, /* xCreate */ fts5structConnectMethod, /* xConnect */ fts5structBestIndexMethod, /* xBestIndex */ fts5structDisconnectMethod, /* xDisconnect */ 0, /* xDestroy */ fts5structOpenMethod, /* xOpen */ fts5structCloseMethod, /* xClose */ fts5structFilterMethod, /* xFilter */ fts5structNextMethod, /* xNext */ fts5structEofMethod, /* xEof */ fts5structColumnMethod, /* xColumn */ fts5structRowidMethod, /* xRowid */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; rc = sqlite3_create_module(db, "fts5_structure", &fts5structure_module, 0); } return rc; #else return SQLITE_OK; UNUSED_PARAM(db); #endif } |
︙ | ︙ | |||
241280 241281 241282 241283 241284 241285 241286 | ){ Fts5FullTable *pTab = (Fts5FullTable*)pVtab; Fts5Config *pConfig = pTab->p.pConfig; int eType0; /* value_type() of apVal[0] */ int rc = SQLITE_OK; /* Return code */ int bUpdateOrDelete = 0; | < | 244523 244524 244525 244526 244527 244528 244529 244530 244531 244532 244533 244534 244535 244536 | ){ Fts5FullTable *pTab = (Fts5FullTable*)pVtab; Fts5Config *pConfig = pTab->p.pConfig; int eType0; /* value_type() of apVal[0] */ int rc = SQLITE_OK; /* Return code */ int bUpdateOrDelete = 0; /* A transaction must be open when this is called. */ assert( pTab->ts.eState==1 || pTab->ts.eState==2 ); assert( pVtab->zErrMsg==0 ); assert( nArg==1 || nArg==(2+pConfig->nCol+2) ); assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER || sqlite3_value_type(apVal[0])==SQLITE_NULL |
︙ | ︙ | |||
241309 241310 241311 241312 241313 241314 241315 | && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL ){ /* A "special" INSERT op. These are handled separately. */ const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]); if( pConfig->eContent!=FTS5_CONTENT_NORMAL && 0==sqlite3_stricmp("delete", z) ){ | > > > > > > | > | | > | > > > | 244551 244552 244553 244554 244555 244556 244557 244558 244559 244560 244561 244562 244563 244564 244565 244566 244567 244568 244569 244570 244571 244572 244573 244574 244575 244576 244577 244578 244579 244580 244581 244582 244583 244584 244585 244586 244587 244588 244589 244590 244591 244592 244593 244594 244595 244596 244597 244598 244599 244600 244601 244602 | && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL ){ /* A "special" INSERT op. These are handled separately. */ const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]); if( pConfig->eContent!=FTS5_CONTENT_NORMAL && 0==sqlite3_stricmp("delete", z) ){ if( pConfig->bContentlessDelete ){ fts5SetVtabError(pTab, "'delete' may not be used with a contentless_delete=1 table" ); rc = SQLITE_ERROR; }else{ rc = fts5SpecialDelete(pTab, apVal); } }else{ rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]); } }else{ /* A regular INSERT, UPDATE or DELETE statement. The trick here is that ** any conflict on the rowid value must be detected before any ** modifications are made to the database file. There are 4 cases: ** ** 1) DELETE ** 2) UPDATE (rowid not modified) ** 3) UPDATE (rowid modified) ** 4) INSERT ** ** Cases 3 and 4 may violate the rowid constraint. */ int eConflict = SQLITE_ABORT; if( pConfig->eContent==FTS5_CONTENT_NORMAL || pConfig->bContentlessDelete ){ eConflict = sqlite3_vtab_on_conflict(pConfig->db); } assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL ); assert( nArg!=1 || eType0==SQLITE_INTEGER ); /* Filter out attempts to run UPDATE or DELETE on contentless tables. ** This is not suported. Except - DELETE is supported if the CREATE ** VIRTUAL TABLE statement contained "contentless_delete=1". */ if( eType0==SQLITE_INTEGER && pConfig->eContent==FTS5_CONTENT_NONE && pConfig->bContentlessDelete==0 ){ pTab->p.base.zErrMsg = sqlite3_mprintf( "cannot %s contentless fts5 table: %s", (nArg>1 ? "UPDATE" : "DELETE from"), pConfig->zName ); rc = SQLITE_ERROR; } |
︙ | ︙ | |||
241422 241423 241424 241425 241426 241427 241428 | ** Implementation of xSync() method. */ static int fts5SyncMethod(sqlite3_vtab *pVtab){ int rc; Fts5FullTable *pTab = (Fts5FullTable*)pVtab; fts5CheckTransactionState(pTab, FTS5_SYNC, 0); pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg; | < | | 244675 244676 244677 244678 244679 244680 244681 244682 244683 244684 244685 244686 244687 244688 244689 | ** Implementation of xSync() method. */ static int fts5SyncMethod(sqlite3_vtab *pVtab){ int rc; Fts5FullTable *pTab = (Fts5FullTable*)pVtab; fts5CheckTransactionState(pTab, FTS5_SYNC, 0); pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg; rc = sqlite3Fts5FlushToDisk(&pTab->p); pTab->p.pConfig->pzErrmsg = 0; return rc; } /* ** Implementation of xBegin() method. */ |
︙ | ︙ | |||
242190 242191 242192 242193 242194 242195 242196 242197 242198 242199 242200 242201 242202 242203 | }else if( !fts5IsContentless(pTab) ){ pConfig->pzErrmsg = &pTab->p.base.zErrMsg; rc = fts5SeekCursor(pCsr, 1); if( rc==SQLITE_OK ){ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); } pConfig->pzErrmsg = 0; } return rc; } /* ** This routine implements the xFindFunction method for the FTS3 | > > > > > > | 245442 245443 245444 245445 245446 245447 245448 245449 245450 245451 245452 245453 245454 245455 245456 245457 245458 245459 245460 245461 | }else if( !fts5IsContentless(pTab) ){ pConfig->pzErrmsg = &pTab->p.base.zErrMsg; rc = fts5SeekCursor(pCsr, 1); if( rc==SQLITE_OK ){ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); } pConfig->pzErrmsg = 0; }else if( pConfig->bContentlessDelete && sqlite3_vtab_nochange(pCtx) ){ char *zErr = sqlite3_mprintf("cannot UPDATE a subset of " "columns on fts5 contentless-delete table: %s", pConfig->zName ); sqlite3_result_error(pCtx, zErr, -1); sqlite3_free(zErr); } return rc; } /* ** This routine implements the xFindFunction method for the FTS3 |
︙ | ︙ | |||
242472 242473 242474 242475 242476 242477 242478 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); | | | 245730 245731 245732 245733 245734 245735 245736 245737 245738 245739 245740 245741 245742 245743 245744 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); sqlite3_result_text(pCtx, "fts5: 2023-08-17 17:48:20 3c06709335eb4b98e3a684e3ebbae69eeb6a21b452bce29159c82bb632d6a042", -1, SQLITE_TRANSIENT); } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts5ShadowName(const char *zName){ |
︙ | ︙ | |||
242685 242686 242687 242688 242689 242690 242691 | "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC", "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC", "SELECT %s FROM %s T WHERE T.%Q=?", /* LOOKUP */ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* INSERT_CONTENT */ "REPLACE INTO %Q.'%q_content' VALUES(%s)", /* REPLACE_CONTENT */ "DELETE FROM %Q.'%q_content' WHERE id=?", /* DELETE_CONTENT */ | | | | 245943 245944 245945 245946 245947 245948 245949 245950 245951 245952 245953 245954 245955 245956 245957 245958 245959 245960 | "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC", "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC", "SELECT %s FROM %s T WHERE T.%Q=?", /* LOOKUP */ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* INSERT_CONTENT */ "REPLACE INTO %Q.'%q_content' VALUES(%s)", /* REPLACE_CONTENT */ "DELETE FROM %Q.'%q_content' WHERE id=?", /* DELETE_CONTENT */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?%s)", /* REPLACE_DOCSIZE */ "DELETE FROM %Q.'%q_docsize' WHERE id=?", /* DELETE_DOCSIZE */ "SELECT sz%s FROM %Q.'%q_docsize' WHERE id=?", /* LOOKUP_DOCSIZE */ "REPLACE INTO %Q.'%q_config' VALUES(?,?)", /* REPLACE_CONFIG */ "SELECT %s FROM %s AS T", /* SCAN */ }; Fts5Config *pC = p->pConfig; char *zSql = 0; |
︙ | ︙ | |||
242735 242736 242737 242738 242739 242740 242741 242742 242743 242744 242745 242746 242747 242748 | } zBind[i*2-1] = '\0'; zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind); sqlite3_free(zBind); } break; } default: zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName); break; } if( zSql==0 ){ | > > > > > > > > > > > > > | 245993 245994 245995 245996 245997 245998 245999 246000 246001 246002 246003 246004 246005 246006 246007 246008 246009 246010 246011 246012 246013 246014 246015 246016 246017 246018 246019 | } zBind[i*2-1] = '\0'; zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind); sqlite3_free(zBind); } break; } case FTS5_STMT_REPLACE_DOCSIZE: zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, (pC->bContentlessDelete ? ",?" : "") ); break; case FTS5_STMT_LOOKUP_DOCSIZE: zSql = sqlite3_mprintf(azStmt[eStmt], (pC->bContentlessDelete ? ",origin" : ""), pC->zDb, pC->zName ); break; default: zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName); break; } if( zSql==0 ){ |
︙ | ︙ | |||
242925 242926 242927 242928 242929 242930 242931 | } rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr); } sqlite3_free(zDefn); } if( rc==SQLITE_OK && pConfig->bColumnsize ){ | > > > > | < < | 246196 246197 246198 246199 246200 246201 246202 246203 246204 246205 246206 246207 246208 246209 246210 246211 246212 246213 246214 | } rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr); } sqlite3_free(zDefn); } if( rc==SQLITE_OK && pConfig->bColumnsize ){ const char *zCols = "id INTEGER PRIMARY KEY, sz BLOB"; if( pConfig->bContentlessDelete ){ zCols = "id INTEGER PRIMARY KEY, sz BLOB, origin INTEGER"; } rc = sqlite3Fts5CreateTable(pConfig, "docsize", zCols, 0, pzErr); } if( rc==SQLITE_OK ){ rc = sqlite3Fts5CreateTable( pConfig, "config", "k PRIMARY KEY, v", 1, pzErr ); } if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
243004 243005 243006 243007 243008 243009 243010 | static int fts5StorageDeleteFromIndex( Fts5Storage *p, i64 iDel, sqlite3_value **apVal ){ Fts5Config *pConfig = p->pConfig; sqlite3_stmt *pSeek = 0; /* SELECT to read row iDel from %_data */ | | < | 246277 246278 246279 246280 246281 246282 246283 246284 246285 246286 246287 246288 246289 246290 246291 246292 246293 246294 246295 246296 246297 246298 246299 246300 246301 246302 246303 246304 246305 246306 | static int fts5StorageDeleteFromIndex( Fts5Storage *p, i64 iDel, sqlite3_value **apVal ){ Fts5Config *pConfig = p->pConfig; sqlite3_stmt *pSeek = 0; /* SELECT to read row iDel from %_data */ int rc = SQLITE_OK; /* Return code */ int rc2; /* sqlite3_reset() return code */ int iCol; Fts5InsertCtx ctx; if( apVal==0 ){ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pSeek, 1, iDel); if( sqlite3_step(pSeek)!=SQLITE_ROW ){ return sqlite3_reset(pSeek); } } ctx.pStorage = p; ctx.iCol = -1; for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){ if( pConfig->abUnindexed[iCol-1]==0 ){ const char *zText; int nText; assert( pSeek==0 || apVal==0 ); assert( pSeek!=0 || apVal!=0 ); if( pSeek ){ |
︙ | ︙ | |||
243057 243058 243059 243060 243061 243062 243063 243064 243065 243066 243067 243068 243069 243070 243071 243072 243073 243074 243075 243076 243077 243078 243079 243080 243081 243082 243083 | } rc2 = sqlite3_reset(pSeek); if( rc==SQLITE_OK ) rc = rc2; return rc; } /* ** Insert a record into the %_docsize table. Specifically, do: ** ** INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf); ** ** If there is no %_docsize table (as happens if the columnsize=0 option ** is specified when the FTS5 table is created), this function is a no-op. */ static int fts5StorageInsertDocsize( Fts5Storage *p, /* Storage module to write to */ i64 iRowid, /* id value */ Fts5Buffer *pBuf /* sz value */ ){ int rc = SQLITE_OK; if( p->pConfig->bColumnsize ){ sqlite3_stmt *pReplace = 0; rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pReplace, 1, iRowid); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > | 246329 246330 246331 246332 246333 246334 246335 246336 246337 246338 246339 246340 246341 246342 246343 246344 246345 246346 246347 246348 246349 246350 246351 246352 246353 246354 246355 246356 246357 246358 246359 246360 246361 246362 246363 246364 246365 246366 246367 246368 246369 246370 246371 246372 246373 246374 246375 246376 246377 246378 246379 246380 246381 246382 246383 246384 246385 246386 246387 246388 246389 246390 246391 246392 246393 246394 246395 246396 246397 246398 246399 246400 246401 246402 246403 246404 | } rc2 = sqlite3_reset(pSeek); if( rc==SQLITE_OK ) rc = rc2; return rc; } /* ** This function is called to process a DELETE on a contentless_delete=1 ** table. It adds the tombstone required to delete the entry with rowid ** iDel. If successful, SQLITE_OK is returned. Or, if an error occurs, ** an SQLite error code. */ static int fts5StorageContentlessDelete(Fts5Storage *p, i64 iDel){ i64 iOrigin = 0; sqlite3_stmt *pLookup = 0; int rc = SQLITE_OK; assert( p->pConfig->bContentlessDelete ); assert( p->pConfig->eContent==FTS5_CONTENT_NONE ); /* Look up the origin of the document in the %_docsize table. Store ** this in stack variable iOrigin. */ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP_DOCSIZE, &pLookup, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pLookup, 1, iDel); if( SQLITE_ROW==sqlite3_step(pLookup) ){ iOrigin = sqlite3_column_int64(pLookup, 1); } rc = sqlite3_reset(pLookup); } if( rc==SQLITE_OK && iOrigin!=0 ){ rc = sqlite3Fts5IndexContentlessDelete(p->pIndex, iOrigin, iDel); } return rc; } /* ** Insert a record into the %_docsize table. Specifically, do: ** ** INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf); ** ** If there is no %_docsize table (as happens if the columnsize=0 option ** is specified when the FTS5 table is created), this function is a no-op. */ static int fts5StorageInsertDocsize( Fts5Storage *p, /* Storage module to write to */ i64 iRowid, /* id value */ Fts5Buffer *pBuf /* sz value */ ){ int rc = SQLITE_OK; if( p->pConfig->bColumnsize ){ sqlite3_stmt *pReplace = 0; rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pReplace, 1, iRowid); if( p->pConfig->bContentlessDelete ){ i64 iOrigin = 0; rc = sqlite3Fts5IndexGetOrigin(p->pIndex, &iOrigin); sqlite3_bind_int64(pReplace, 3, iOrigin); } if( rc==SQLITE_OK ){ sqlite3_bind_blob(pReplace, 2, pBuf->p, pBuf->n, SQLITE_STATIC); sqlite3_step(pReplace); rc = sqlite3_reset(pReplace); sqlite3_bind_null(pReplace, 2); } } } return rc; } /* ** Load the contents of the "averages" record from disk into the |
︙ | ︙ | |||
243144 243145 243146 243147 243148 243149 243150 | sqlite3_stmt *pDel = 0; assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 ); rc = fts5StorageLoadTotals(p, 1); /* Delete the index records */ if( rc==SQLITE_OK ){ | > > > > > > > | > | 246454 246455 246456 246457 246458 246459 246460 246461 246462 246463 246464 246465 246466 246467 246468 246469 246470 246471 246472 246473 246474 246475 246476 | sqlite3_stmt *pDel = 0; assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 ); rc = fts5StorageLoadTotals(p, 1); /* Delete the index records */ if( rc==SQLITE_OK ){ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel); } if( rc==SQLITE_OK ){ if( p->pConfig->bContentlessDelete ){ rc = fts5StorageContentlessDelete(p, iDel); }else{ rc = fts5StorageDeleteFromIndex(p, iDel, apVal); } } /* Delete the %_docsize record */ if( rc==SQLITE_OK && pConfig->bColumnsize ){ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDel, 1, iDel); |
︙ | ︙ | |||
247522 247523 247524 247525 247526 247527 247528 247529 247530 247531 247532 247533 247534 247535 | */ #ifndef SQLITE_AMALGAMATION # include "sqlite3.h" # include <stdlib.h> # include <string.h> # include <assert.h> typedef unsigned char u8; #endif #include <ctype.h> /* Used to get the current process ID */ #if !defined(_WIN32) # include <signal.h> # include <unistd.h> | > > > > > > > > > > > > > > > > > > > | 250840 250841 250842 250843 250844 250845 250846 250847 250848 250849 250850 250851 250852 250853 250854 250855 250856 250857 250858 250859 250860 250861 250862 250863 250864 250865 250866 250867 250868 250869 250870 250871 250872 | */ #ifndef SQLITE_AMALGAMATION # include "sqlite3.h" # include <stdlib.h> # include <string.h> # include <assert.h> typedef unsigned char u8; # ifndef SQLITE_PTRSIZE # if defined(__SIZEOF_POINTER__) # define SQLITE_PTRSIZE __SIZEOF_POINTER__ # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(_M_ARM) || defined(__arm__) || defined(__x86) || \ (defined(__APPLE__) && defined(__POWERPC__)) || \ (defined(__TOS_AIX__) && !defined(__64BIT__)) # define SQLITE_PTRSIZE 4 # else # define SQLITE_PTRSIZE 8 # endif # endif /* SQLITE_PTRSIZE */ # if defined(HAVE_STDINT_H) typedef uintptr_t uptr; # elif SQLITE_PTRSIZE==4 typedef unsigned int uptr; # else typedef sqlite3_uint64 uptr; # endif #endif #include <ctype.h> /* Used to get the current process ID */ #if !defined(_WIN32) # include <signal.h> # include <unistd.h> |
︙ | ︙ | |||
248142 248143 248144 248145 248146 248147 248148 | case SQLITE_TRACE_STMT: { sqlite3_stmt *pStmt = (sqlite3_stmt *)pd; char *zSql = (char *)xd; pCmd = Tcl_NewStringObj(pDb->zTraceV2, -1); Tcl_IncrRefCount(pCmd); Tcl_ListObjAppendElement(pDb->interp, pCmd, | | | | | | 251479 251480 251481 251482 251483 251484 251485 251486 251487 251488 251489 251490 251491 251492 251493 251494 251495 251496 251497 251498 251499 251500 251501 251502 251503 251504 251505 251506 251507 251508 251509 251510 251511 251512 251513 251514 251515 251516 251517 251518 251519 251520 251521 251522 251523 251524 251525 251526 251527 251528 251529 251530 251531 251532 251533 251534 | case SQLITE_TRACE_STMT: { sqlite3_stmt *pStmt = (sqlite3_stmt *)pd; char *zSql = (char *)xd; pCmd = Tcl_NewStringObj(pDb->zTraceV2, -1); Tcl_IncrRefCount(pCmd); Tcl_ListObjAppendElement(pDb->interp, pCmd, Tcl_NewWideIntObj((Tcl_WideInt)(uptr)pStmt)); Tcl_ListObjAppendElement(pDb->interp, pCmd, Tcl_NewStringObj(zSql, -1)); Tcl_EvalObjEx(pDb->interp, pCmd, TCL_EVAL_DIRECT); Tcl_DecrRefCount(pCmd); Tcl_ResetResult(pDb->interp); break; } case SQLITE_TRACE_PROFILE: { sqlite3_stmt *pStmt = (sqlite3_stmt *)pd; sqlite3_int64 ns = *(sqlite3_int64*)xd; pCmd = Tcl_NewStringObj(pDb->zTraceV2, -1); Tcl_IncrRefCount(pCmd); Tcl_ListObjAppendElement(pDb->interp, pCmd, Tcl_NewWideIntObj((Tcl_WideInt)(uptr)pStmt)); Tcl_ListObjAppendElement(pDb->interp, pCmd, Tcl_NewWideIntObj((Tcl_WideInt)ns)); Tcl_EvalObjEx(pDb->interp, pCmd, TCL_EVAL_DIRECT); Tcl_DecrRefCount(pCmd); Tcl_ResetResult(pDb->interp); break; } case SQLITE_TRACE_ROW: { sqlite3_stmt *pStmt = (sqlite3_stmt *)pd; pCmd = Tcl_NewStringObj(pDb->zTraceV2, -1); Tcl_IncrRefCount(pCmd); Tcl_ListObjAppendElement(pDb->interp, pCmd, Tcl_NewWideIntObj((Tcl_WideInt)(uptr)pStmt)); Tcl_EvalObjEx(pDb->interp, pCmd, TCL_EVAL_DIRECT); Tcl_DecrRefCount(pCmd); Tcl_ResetResult(pDb->interp); break; } case SQLITE_TRACE_CLOSE: { sqlite3 *db = (sqlite3 *)pd; pCmd = Tcl_NewStringObj(pDb->zTraceV2, -1); Tcl_IncrRefCount(pCmd); Tcl_ListObjAppendElement(pDb->interp, pCmd, Tcl_NewWideIntObj((Tcl_WideInt)(uptr)db)); Tcl_EvalObjEx(pDb->interp, pCmd, TCL_EVAL_DIRECT); Tcl_DecrRefCount(pCmd); Tcl_ResetResult(pDb->interp); break; } } return SQLITE_OK; |
︙ | ︙ | |||
249247 249248 249249 249250 249251 249252 249253 | } return Tcl_NewStringObj((char*)sqlite3_column_text(pStmt, iCol), -1); } /* ** If using Tcl version 8.6 or greater, use the NR functions to avoid | | | 252584 252585 252586 252587 252588 252589 252590 252591 252592 252593 252594 252595 252596 252597 252598 | } return Tcl_NewStringObj((char*)sqlite3_column_text(pStmt, iCol), -1); } /* ** If using Tcl version 8.6 or greater, use the NR functions to avoid ** recursive evaluation of scripts by the [db eval] and [db trans] ** commands. Even if the headers used while compiling the extension ** are 8.6 or newer, the code still tests the Tcl version at runtime. ** This allows stubs-enabled builds to be used with older Tcl libraries. */ #if TCL_MAJOR_VERSION>8 || (TCL_MAJOR_VERSION==8 && TCL_MINOR_VERSION>=6) # define SQLITE_TCL_NRE 1 static int DbUseNre(void){ |
︙ | ︙ | |||
249908 249909 249910 249911 249912 249913 249914 | ** as 'db changes' due to conflict-algorithm selected. ** ** This code is basically an implementation/enhancement of ** the sqlite3 shell.c ".import" command. ** ** This command usage is equivalent to the sqlite2.x COPY statement, ** which imports file data into a table using the PostgreSQL COPY file format: | | | 253245 253246 253247 253248 253249 253250 253251 253252 253253 253254 253255 253256 253257 253258 253259 | ** as 'db changes' due to conflict-algorithm selected. ** ** This code is basically an implementation/enhancement of ** the sqlite3 shell.c ".import" command. ** ** This command usage is equivalent to the sqlite2.x COPY statement, ** which imports file data into a table using the PostgreSQL COPY file format: ** $db copy $conflict_algorithm $table_name $filename \t \\N */ case DB_COPY: { char *zTable; /* Insert data into this table */ char *zFile; /* The file from which to extract data */ char *zConflict; /* The conflict algorithm to use */ sqlite3_stmt *pStmt; /* A statement */ int nCol; /* Number of columns in the table */ |
︙ | ︙ | |||
250894 250895 250896 250897 250898 250899 250900 | } /* $db transaction [-deferred|-immediate|-exclusive] SCRIPT ** ** Start a new transaction (if we are not already in the midst of a ** transaction) and execute the TCL script SCRIPT. After SCRIPT ** completes, either commit the transaction or roll it back if SCRIPT | | | 254231 254232 254233 254234 254235 254236 254237 254238 254239 254240 254241 254242 254243 254244 254245 | } /* $db transaction [-deferred|-immediate|-exclusive] SCRIPT ** ** Start a new transaction (if we are not already in the midst of a ** transaction) and execute the TCL script SCRIPT. After SCRIPT ** completes, either commit the transaction or roll it back if SCRIPT ** throws an exception. Or if no new transaction was started, do nothing. ** pass the exception on up the stack. ** ** This command was inspired by Dave Thomas's talk on Ruby at the ** 2005 O'Reilly Open Source Convention (OSCON). */ case DB_TRANSACTION: { Tcl_Obj *pScript; |
︙ | ︙ |