Wapp

Check-in [be1f948a5c]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to the latest 3.40.0 alpha version that includes all of the fixes of version 3.39.4.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: be1f948a5c238e4cf547092db6e02359d3a14efc0844333ca67b37aba870e7ea
User & Date: drh 2022-09-30 12:29:21.200
Context
2022-11-08
14:39
Update the built-in SQLite to the latest 3.40.0 beta. (check-in: f4a6f71da6 user: drh tags: trunk)
2022-09-30
12:29
Update the built-in SQLite to the latest 3.40.0 alpha version that includes all of the fixes of version 3.39.4. (check-in: be1f948a5c user: drh tags: trunk)
12:28
Correction to the documentation of the "wapp" command. (check-in: 4cc307273e user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to tclsqlite3.c.
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.40.0"
#define SQLITE_VERSION_NUMBER 3040000
#define SQLITE_SOURCE_ID      "2022-08-22 15:18:37 c296a9d958ec360fc8d217363348b4918d665bccb3c4f27503a2dcef7db49052"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.40.0"
#define SQLITE_VERSION_NUMBER 3040000
#define SQLITE_SOURCE_ID      "2022-09-28 19:14:01 f25cf63471cbed1edb27591e57fead62550d4046dbdcb61312288f0f6f24c646"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
13149
13150
13151
13152
13153
13154
13155





13156
13157
13158
13159
13160
13161
13162
#endif /* _FTS5_H */

/******** End of fts5.h *********/

/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/






/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
#include "config.h"
#define SQLITECONFIG_H 1







>
>
>
>
>







13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
#endif /* _FTS5_H */

/******** End of fts5.h *********/

/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/*
** Reuse the STATIC_LRU for mutex access to sqlite3_temp_directory.
*/
#define SQLITE_MUTEX_STATIC_TEMPDIR SQLITE_MUTEX_STATIC_VFS1

/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#if defined(_HAVE_SQLITE_CONFIG_H) && !defined(SQLITECONFIG_H)
#include "config.h"
#define SQLITECONFIG_H 1
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
*/
struct Vdbe {
  sqlite3 *db;            /* The database connection that owns this statement */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  Parse *pParse;          /* Parsing context used to create this Vdbe */
  ynVar nVar;             /* Number of entries in aVar[] */
  int nMem;               /* Number of memory locations currently allocated */
  int nCursor;            /* Number of slots in apCsr[] */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */







|







22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
*/
struct Vdbe {
  sqlite3 *db;            /* The database connection that owns this statement */
  Vdbe **ppVPrev,*pVNext; /* Linked list of VDBEs with the same Vdbe.db */
  Parse *pParse;          /* Parsing context used to create this Vdbe */
  ynVar nVar;             /* Number of entries in aVar[] */
  int nMem;               /* Number of memory locations currently allocated */
  int nCursor;            /* Number of slots in apCsr[] */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
    case SQLITE_DBSTATUS_STMT_USED: {
      struct Vdbe *pVdbe;         /* Used to iterate through VMs */
      int nByte = 0;              /* Used to accumulate return value */

      db->pnBytesFreed = &nByte;
      assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
      db->lookaside.pEnd = db->lookaside.pStart;
      for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
        sqlite3VdbeDelete(pVdbe);
      }
      db->lookaside.pEnd = db->lookaside.pTrueEnd;
      db->pnBytesFreed = 0;

      *pHighwater = 0;  /* IMP: R-64479-57858 */
      *pCurrent = nByte;







|







23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
    case SQLITE_DBSTATUS_STMT_USED: {
      struct Vdbe *pVdbe;         /* Used to iterate through VMs */
      int nByte = 0;              /* Used to accumulate return value */

      db->pnBytesFreed = &nByte;
      assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
      db->lookaside.pEnd = db->lookaside.pStart;
      for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pVNext){
        sqlite3VdbeDelete(pVdbe);
      }
      db->lookaside.pEnd = db->lookaside.pTrueEnd;
      db->pnBytesFreed = 0;

      *pHighwater = 0;  /* IMP: R-64479-57858 */
      *pCurrent = nByte;
29070
29071
29072
29073
29074
29075
29076





















29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
}






















/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
SQLITE_PRIVATE void *sqlite3Malloc(u64 n){
  void *p;
  if( n==0 || n>=0x7fffff00 ){
    /* A memory allocation of a number of bytes which is near the maximum
    ** signed integer value might cause an integer overflow inside of the
    ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
    ** 255 bytes of overhead.  SQLite itself will never use anything near
    ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
    p = 0;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm((int)n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
<
<
<
<
<







29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109





29110
29111
29112
29113
29114
29115
29116
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
}

/*
** Maximum size of any single memory allocation.
**
** This is not a limit on the total amount of memory used.  This is
** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc().
**
** The upper bound is slightly less than 2GiB:  0x7ffffeff == 2,147,483,391
** This provides a 256-byte safety margin for defense against 32-bit
** signed integer overflow bugs when computing memory allocation sizes.
** Parnoid applications might want to reduce the maximum allocation size
** further for an even larger safety margin.  0x3fffffff or 0x0fffffff
** or even smaller would be reasonable upper bounds on the size of a memory
** allocations for most applications.
*/
#ifndef SQLITE_MAX_ALLOCATION_SIZE
# define SQLITE_MAX_ALLOCATION_SIZE  2147483391
#endif
#if SQLITE_MAX_ALLOCATION_SIZE>2147483391
# error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391
#endif

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
SQLITE_PRIVATE void *sqlite3Malloc(u64 n){
  void *p;
  if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){





    p = 0;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm((int)n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
** during statement execution (sqlite3_step() etc.).
*/
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
  char *zMsg;
  va_list ap;
  sqlite3 *db = pParse->db;
  assert( db!=0 );
  assert( db->pParse==pParse );
  db->errByteOffset = -2;
  va_start(ap, zFormat);
  zMsg = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  if( db->errByteOffset<-1 ) db->errByteOffset = -1;
  if( db->suppressErr ){
    sqlite3DbFree(db, zMsg);







|







33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
** during statement execution (sqlite3_step() etc.).
*/
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
  char *zMsg;
  va_list ap;
  sqlite3 *db = pParse->db;
  assert( db!=0 );
  assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
  db->errByteOffset = -2;
  va_start(ap, zFormat);
  zMsg = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  if( db->errByteOffset<-1 ) db->errByteOffset = -1;
  if( db->suppressErr ){
    sqlite3DbFree(db, zMsg);
41393
41394
41395
41396
41397
41398
41399

41400
41401
41402
41403
41404
41405
41406
41407

41408

41409

41410
41411
41412
41413
41414
41415
41416
41417



41418


41419
41420
41421
41422
41423
41424
41425
41426
** Create a temporary file name in zBuf.  zBuf must be allocated
** by the calling process and must be big enough to hold at least
** pVfs->mxPathname bytes.
*/
static int unixGetTempname(int nBuf, char *zBuf){
  const char *zDir;
  int iLimit = 0;


  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing.
  */
  zBuf[0] = 0;
  SimulateIOError( return SQLITE_IOERR );


  zDir = unixTempFileDir();

  if( zDir==0 ) return SQLITE_IOERR_GETTEMPPATH;

  do{
    u64 r;
    sqlite3_randomness(sizeof(r), &r);
    assert( nBuf>2 );
    zBuf[nBuf-2] = 0;
    sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
                     zDir, r, 0);
    if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ) return SQLITE_ERROR;



  }while( osAccess(zBuf,0)==0 );


  return SQLITE_OK;
}

#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
** Routine to transform a unixFile into a proxy-locking unixFile.
** Implementation in the proxy-lock division, but used by unixOpen()
** if SQLITE_PREFER_PROXY_LOCKING is defined.







>








>

>
|
>
|
|
|
|
|
|
|
|
>
>
>
|
>
>
|







41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
** Create a temporary file name in zBuf.  zBuf must be allocated
** by the calling process and must be big enough to hold at least
** pVfs->mxPathname bytes.
*/
static int unixGetTempname(int nBuf, char *zBuf){
  const char *zDir;
  int iLimit = 0;
  int rc = SQLITE_OK;

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing.
  */
  zBuf[0] = 0;
  SimulateIOError( return SQLITE_IOERR );

  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  zDir = unixTempFileDir();
  if( zDir==0 ){
    rc = SQLITE_IOERR_GETTEMPPATH;
  }else{
    do{
      u64 r;
      sqlite3_randomness(sizeof(r), &r);
      assert( nBuf>2 );
      zBuf[nBuf-2] = 0;
      sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
                       zDir, r, 0);
      if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){
        rc = SQLITE_ERROR;
        break;
      }
    }while( osAccess(zBuf,0)==0 );
  }
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  return rc;
}

#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
** Routine to transform a unixFile into a proxy-locking unixFile.
** Implementation in the proxy-lock division, but used by unixOpen()
** if SQLITE_PREFER_PROXY_LOCKING is defined.
45556
45557
45558
45559
45560
45561
45562

45563
45564
45565
45566

45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581

45582
45583
45584
45585
45586


45587


45588
45589
45590
45591
45592
45593
45594
45595
** it accepts a UTF-8 string.
*/
SQLITE_API int sqlite3_win32_set_directory8(
  unsigned long type, /* Identifier for directory being set or reset */
  const char *zValue  /* New value for directory being set or reset */
){
  char **ppDirectory = 0;

#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif

  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
  }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zCopy = 0;
    if( zValue && zValue[0] ){
      zCopy = sqlite3_mprintf("%s", zValue);
      if ( zCopy==0 ){
        return SQLITE_NOMEM_BKPT;

      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zCopy;
    return SQLITE_OK;


  }


  return SQLITE_ERROR;
}

/*
** This function is the same as sqlite3_win32_set_directory (below); however,
** it accepts a UTF-16 string.
*/
SQLITE_API int sqlite3_win32_set_directory16(







>

|


>














|
>




|
>
>

>
>
|







45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
** it accepts a UTF-8 string.
*/
SQLITE_API int sqlite3_win32_set_directory8(
  unsigned long type, /* Identifier for directory being set or reset */
  const char *zValue  /* New value for directory being set or reset */
){
  char **ppDirectory = 0;
  int rc;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
  }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zCopy = 0;
    if( zValue && zValue[0] ){
      zCopy = sqlite3_mprintf("%s", zValue);
      if ( zCopy==0 ){
        rc = SQLITE_NOMEM_BKPT;
        goto set_directory8_done;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zCopy;
    rc = SQLITE_OK;
  }else{
    rc = SQLITE_ERROR;
  }
set_directory8_done:
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  return rc;
}

/*
** This function is the same as sqlite3_win32_set_directory (below); however,
** it accepts a UTF-16 string.
*/
SQLITE_API int sqlite3_win32_set_directory16(
48354
48355
48356
48357
48358
48359
48360












48361
48362
48363
48364
48365
48366
48367
        zBuf[nLen+1] = '\0';
        return 1;
      }
    }
  }
  return 0;
}













/*
** Create a temporary file name and store the resulting pointer into pzBuf.
** The pointer returned in pzBuf must be freed via sqlite3_free().
*/
static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
  static char zChars[] =







>
>
>
>
>
>
>
>
>
>
>
>







48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
        zBuf[nLen+1] = '\0';
        return 1;
      }
    }
  }
  return 0;
}

/*
** If sqlite3_temp_directory is not, take the mutex and return true.
**
** If sqlite3_temp_directory is NULL, omit the mutex and return false.
*/
static int winTempDirDefined(void){
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  if( sqlite3_temp_directory!=0 ) return 1;
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  return 0;
}

/*
** Create a temporary file name and store the resulting pointer into pzBuf.
** The pointer returned in pzBuf must be freed via sqlite3_free().
*/
static int winGetTempname(sqlite3_vfs *pVfs, char **pzBuf){
  static char zChars[] =
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404

48405
48406
48407
48408
48409
48410

48411

48412
48413
48414
48415
48416
48417
48418

  /* Figure out the effective temporary directory.  First, check if one
  ** has been explicitly set by the application; otherwise, use the one
  ** configured by the operating system.
  */
  nDir = nMax - (nPre + 15);
  assert( nDir>0 );
  if( sqlite3_temp_directory ){
    int nDirLen = sqlite3Strlen30(sqlite3_temp_directory);
    if( nDirLen>0 ){
      if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){
        nDirLen++;
      }
      if( nDirLen>nDir ){

        sqlite3_free(zBuf);
        OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
        return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0);
      }
      sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory);
    }

  }

#if defined(__CYGWIN__)
  else{
    static const char *azDirs[] = {
       0, /* getenv("SQLITE_TMPDIR") */
       0, /* getenv("TMPDIR") */
       0, /* getenv("TMP") */
       0, /* getenv("TEMP") */







|






>






>

>







48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470

  /* Figure out the effective temporary directory.  First, check if one
  ** has been explicitly set by the application; otherwise, use the one
  ** configured by the operating system.
  */
  nDir = nMax - (nPre + 15);
  assert( nDir>0 );
  if( winTempDirDefined() ){
    int nDirLen = sqlite3Strlen30(sqlite3_temp_directory);
    if( nDirLen>0 ){
      if( !winIsDirSep(sqlite3_temp_directory[nDirLen-1]) ){
        nDirLen++;
      }
      if( nDirLen>nDir ){
        sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
        sqlite3_free(zBuf);
        OSTRACE(("TEMP-FILENAME rc=SQLITE_ERROR\n"));
        return winLogError(SQLITE_ERROR, 0, "winGetTempname1", 0);
      }
      sqlite3_snprintf(nMax, zBuf, "%s", sqlite3_temp_directory);
    }
    sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
  }

#if defined(__CYGWIN__)
  else{
    static const char *azDirs[] = {
       0, /* getenv("SQLITE_TMPDIR") */
       0, /* getenv("TMPDIR") */
       0, /* getenv("TMP") */
       0, /* getenv("TEMP") */
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
}

/*
** Turn a relative pathname into a full pathname.  Write the full
** pathname into zOut[].  zOut[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int winFullPathname(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zRelative,        /* Possibly relative input path */
  int nFull,                    /* Size of output buffer in bytes */
  char *zFull                   /* Output buffer */
){
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
  DWORD nByte;







|







49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
}

/*
** Turn a relative pathname into a full pathname.  Write the full
** pathname into zOut[].  zOut[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int winFullPathnameNoMutex(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zRelative,        /* Possibly relative input path */
  int nFull,                    /* Size of output buffer in bytes */
  char *zFull                   /* Output buffer */
){
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(__CYGWIN__)
  DWORD nByte;
49371
49372
49373
49374
49375
49376
49377














49378
49379
49380
49381
49382
49383
49384
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut);
    sqlite3_free(zOut);
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR_NOMEM_BKPT;
  }
#endif














}

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>







49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
    sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s", zOut);
    sqlite3_free(zOut);
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR_NOMEM_BKPT;
  }
#endif
}
static int winFullPathname(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zRelative,        /* Possibly relative input path */
  int nFull,                    /* Size of output buffer in bytes */
  char *zFull                   /* Output buffer */
){
  int rc;
  MUTEX_LOGIC( sqlite3_mutex *pMutex; )
  MUTEX_LOGIC( pMutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR); )
  sqlite3_mutex_enter(pMutex);
  rc = winFullPathnameNoMutex(pVfs, zRelative, nFull, zFull);
  sqlite3_mutex_leave(pMutex);
  return rc;
}

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
51160
51161
51162
51163
51164
51165
51166










51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192

51193
51194
51195














51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214




51215

51216
51217
51218
51219
51220
51221
51222
** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
** is displayed for many operations, resulting in a lot of output.
*/
#if defined(SQLITE_DEBUG) && 0
  int sqlite3PcacheTrace = 2;       /* 0: off  1: simple  2: cache dumps */
  int sqlite3PcacheMxDump = 9999;   /* Max cache entries for pcacheDump() */
# define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}










  void pcacheDump(PCache *pCache){
    int N;
    int i, j;
    sqlite3_pcache_page *pLower;
    PgHdr *pPg;
    unsigned char *a;

    if( sqlite3PcacheTrace<2 ) return;
    if( pCache->pCache==0 ) return;
    N = sqlite3PcachePagecount(pCache);
    if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
    for(i=1; i<=N; i++){
       pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
       if( pLower==0 ) continue;
       pPg = (PgHdr*)pLower->pExtra;
       printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
       a = (unsigned char *)pLower->pBuf;
       for(j=0; j<12; j++) printf("%02x", a[j]);
       printf("\n");
       if( pPg->pPage==0 ){
         sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
       }
    }
  }
  #else
# define pcacheTrace(X)

# define pcacheDump(X)
#endif















/*
** Check invariants on a PgHdr entry.  Return true if everything is OK.
** Return false if any invariant is violated.
**
** This routine is for use inside of assert() statements only.  For
** example:
**
**          assert( sqlite3PcachePageSanity(pPg) );
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr *pPg){
  PCache *pCache;
  assert( pPg!=0 );
  assert( pPg->pgno>0 || pPg->pPager==0 );    /* Page number is 1 or more */
  pCache = pPg->pCache;
  assert( pCache!=0 );      /* Every page has an associated PCache */
  if( pPg->flags & PGHDR_CLEAN ){
    assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
    assert( pCache->pDirty!=pPg );          /* CLEAN pages not on dirty list */




    assert( pCache->pDirtyTail!=pPg );

  }
  /* WRITEABLE pages must also be DIRTY */
  if( pPg->flags & PGHDR_WRITEABLE ){
    assert( pPg->flags & PGHDR_DIRTY );     /* WRITEABLE implies DIRTY */
  }
  /* NEED_SYNC can be set independently of WRITEABLE.  This can happen,
  ** for example, when using the sqlite3PagerDontWrite() optimization:







>
>
>
>
>
>
>
>
>
>
|

|

<
<








|
<
<
<
<
|




|

>



>
>
>
>
>
>
>
>
>
>
>
>
>
>


















|
>
>
>
>
|
>







51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246


51247
51248
51249
51250
51251
51252
51253
51254
51255




51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
** is displayed for many operations, resulting in a lot of output.
*/
#if defined(SQLITE_DEBUG) && 0
  int sqlite3PcacheTrace = 2;       /* 0: off  1: simple  2: cache dumps */
  int sqlite3PcacheMxDump = 9999;   /* Max cache entries for pcacheDump() */
# define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
  static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){
    PgHdr *pPg;
    unsigned char *a;
    int j;
    pPg = (PgHdr*)pLower->pExtra;
    printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
    a = (unsigned char *)pLower->pBuf;
    for(j=0; j<12; j++) printf("%02x", a[j]);
    printf(" ptr %p\n", pPg);
  }
  static void pcacheDump(PCache *pCache){
    int N;
    int i;
    sqlite3_pcache_page *pLower;



    if( sqlite3PcacheTrace<2 ) return;
    if( pCache->pCache==0 ) return;
    N = sqlite3PcachePagecount(pCache);
    if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
    for(i=1; i<=N; i++){
       pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
       if( pLower==0 ) continue;
       pcachePageTrace(i, pLower);




       if( ((PgHdr*)pLower)->pPage==0 ){
         sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
       }
    }
  }
#else
# define pcacheTrace(X)
# define pcachePageTrace(PGNO, X)
# define pcacheDump(X)
#endif

/*
** Return 1 if pPg is on the dirty list for pCache.  Return 0 if not.
** This routine runs inside of assert() statements only.
*/
#ifdef SQLITE_DEBUG
static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){
  PgHdr *p;
  for(p=pCache->pDirty; p; p=p->pDirtyNext){
    if( p==pPg ) return 1;
  }
  return 0;
}
#endif

/*
** Check invariants on a PgHdr entry.  Return true if everything is OK.
** Return false if any invariant is violated.
**
** This routine is for use inside of assert() statements only.  For
** example:
**
**          assert( sqlite3PcachePageSanity(pPg) );
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3PcachePageSanity(PgHdr *pPg){
  PCache *pCache;
  assert( pPg!=0 );
  assert( pPg->pgno>0 || pPg->pPager==0 );    /* Page number is 1 or more */
  pCache = pPg->pCache;
  assert( pCache!=0 );      /* Every page has an associated PCache */
  if( pPg->flags & PGHDR_CLEAN ){
    assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
    assert( !pageOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirty list */
  }else{
    assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */
    assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg );
    assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg );
    assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg );
    assert( pageOnDirtyList(pCache, pPg) );
  }
  /* WRITEABLE pages must also be DIRTY */
  if( pPg->flags & PGHDR_WRITEABLE ){
    assert( pPg->flags & PGHDR_DIRTY );     /* WRITEABLE implies DIRTY */
  }
  /* NEED_SYNC can be set independently of WRITEABLE.  This can happen,
  ** for example, when using the sqlite3PagerDontWrite() optimization:
51482
51483
51484
51485
51486
51487
51488
51489
51490

51491
51492
51493
51494
51495
51496
51497
  **          (createFlag==1 AND !(bPurgeable AND pDirty)
  */
  eCreate = createFlag & pCache->eCreate;
  assert( eCreate==0 || eCreate==1 || eCreate==2 );
  assert( createFlag==0 || pCache->eCreate==eCreate );
  assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
  pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
  pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
               createFlag?" create":"",pRes));

  return pRes;
}

/*
** If the sqlite3PcacheFetch() routine is unable to allocate a new
** page because no clean pages are available for reuse and the cache
** size limit has been reached, then this routine can be invoked to







|

>







51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
51585
51586
51587
51588
  **          (createFlag==1 AND !(bPurgeable AND pDirty)
  */
  eCreate = createFlag & pCache->eCreate;
  assert( eCreate==0 || eCreate==1 || eCreate==2 );
  assert( createFlag==0 || pCache->eCreate==eCreate );
  assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
  pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
  pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno,
               createFlag?" create":"",pRes));
  pcachePageTrace(pgno, pRes);
  return pRes;
}

/*
** If the sqlite3PcacheFetch() routine is unable to allocate a new
** page because no clean pages are available for reuse and the cache
** size limit has been reached, then this routine can be invoked to
51611
51612
51613
51614
51615
51616
51617

51618
51619
51620
51621
51622
51623
51624
  assert( p->nRef>0 );
  p->pCache->nRefSum--;
  if( (--p->nRef)==0 ){
    if( p->flags&PGHDR_CLEAN ){
      pcacheUnpin(p);
    }else{
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);

    }
  }
}

/*
** Increase the reference count of a supplied page by 1.
*/







>







51702
51703
51704
51705
51706
51707
51708
51709
51710
51711
51712
51713
51714
51715
51716
  assert( p->nRef>0 );
  p->pCache->nRefSum--;
  if( (--p->nRef)==0 ){
    if( p->flags&PGHDR_CLEAN ){
      pcacheUnpin(p);
    }else{
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
      assert( sqlite3PcachePageSanity(p) );
    }
  }
}

/*
** Increase the reference count of a supplied page by 1.
*/
51654
51655
51656
51657
51658
51659
51660

51661
51662
51663
51664
51665
51666
51667
  if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){    /*OPTIMIZATION-IF-FALSE*/
    p->flags &= ~PGHDR_DONT_WRITE;
    if( p->flags & PGHDR_CLEAN ){
      p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
      pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
      assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);

    }
    assert( sqlite3PcachePageSanity(p) );
  }
}

/*
** Make sure the page is marked as clean. If it isn't clean already,







>







51746
51747
51748
51749
51750
51751
51752
51753
51754
51755
51756
51757
51758
51759
51760
  if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){    /*OPTIMIZATION-IF-FALSE*/
    p->flags &= ~PGHDR_DONT_WRITE;
    if( p->flags & PGHDR_CLEAN ){
      p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
      pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
      assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
      assert( sqlite3PcachePageSanity(p) );
    }
    assert( sqlite3PcachePageSanity(p) );
  }
}

/*
** Make sure the page is marked as clean. If it isn't clean already,
51716
51717
51718
51719
51720
51721
51722

51723
51724
51725
51726








51727
51728
51729
51730

51731
51732
51733
51734
51735
51736
51737
}

/*
** Change the page number of page p to newPgno.
*/
SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
  PCache *pCache = p->pCache;

  assert( p->nRef>0 );
  assert( newPgno>0 );
  assert( sqlite3PcachePageSanity(p) );
  pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));








  sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
  p->pgno = newPgno;
  if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
    pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);

  }
}

/*
** Drop every cache entry whose page number is greater than "pgno". The
** caller must ensure that there are no outstanding references to any pages
** other than page 1 with a page number greater than pgno.







>




>
>
>
>
>
>
>
>




>







51809
51810
51811
51812
51813
51814
51815
51816
51817
51818
51819
51820
51821
51822
51823
51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
}

/*
** Change the page number of page p to newPgno.
*/
SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
  PCache *pCache = p->pCache;
  sqlite3_pcache_page *pOther;
  assert( p->nRef>0 );
  assert( newPgno>0 );
  assert( sqlite3PcachePageSanity(p) );
  pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
  pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0);
  if( pOther ){
    PgHdr *pXPage = (PgHdr*)pOther->pExtra;
    assert( pXPage->nRef==0 );
    pXPage->nRef++;
    pCache->nRefSum++;
    sqlite3PcacheDrop(pXPage);
  }
  sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
  p->pgno = newPgno;
  if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
    pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
    assert( sqlite3PcachePageSanity(p) );
  }
}

/*
** Drop every cache entry whose page number is greater than "pgno". The
** caller must ensure that there are no outstanding references to any pages
** other than page 1 with a page number greater than pgno.
52088
52089
52090
52091
52092
52093
52094
52095
52096





52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
** Variables isBulkLocal and isAnchor were once type "u8". That works,
** but causes a 2-byte gap in the structure for most architectures (since
** pointers must be either 4 or 8-byte aligned). As this structure is located
** in memory directly after the associated page data, if the database is
** corrupt, code at the b-tree layer may overread the page buffer and
** read part of this structure before the corruption is detected. This
** can cause a valgrind error if the unitialized gap is accessed. Using u16
** ensures there is no such gap, and therefore no bytes of unitialized memory
** in the structure.





*/
struct PgHdr1 {
  sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
  unsigned int iKey;             /* Key value (page number) */
  u16 isBulkLocal;               /* This page from bulk local storage */
  u16 isAnchor;                  /* This is the PGroup.lru element */
  PgHdr1 *pNext;                 /* Next in hash table chain */
  PCache1 *pCache;               /* Cache that currently owns this page */
  PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
  PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
                                 /* NB: pLruPrev is only valid if pLruNext!=0 */
};

/*
** A page is pinned if it is not on the LRU list.  To be "pinned" means
** that the page is in active use and must not be deallocated.
*/
#define PAGE_IS_PINNED(p)    ((p)->pLruNext==0)







|
|
>
>
>
>
>


|
|
|
|
|
|
|
|
|







52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
** Variables isBulkLocal and isAnchor were once type "u8". That works,
** but causes a 2-byte gap in the structure for most architectures (since
** pointers must be either 4 or 8-byte aligned). As this structure is located
** in memory directly after the associated page data, if the database is
** corrupt, code at the b-tree layer may overread the page buffer and
** read part of this structure before the corruption is detected. This
** can cause a valgrind error if the unitialized gap is accessed. Using u16
** ensures there is no such gap, and therefore no bytes of uninitialized
** memory in the structure.
**
** The pLruNext and pLruPrev pointers form a double-linked circular list
** of all pages that are unpinned.  The PGroup.lru element (which should be
** the only element on the list with PgHdr1.isAnchor set to 1) forms the
** beginning and the end of the list.
*/
struct PgHdr1 {
  sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
  unsigned int iKey;        /* Key value (page number) */
  u16 isBulkLocal;          /* This page from bulk local storage */
  u16 isAnchor;             /* This is the PGroup.lru element */
  PgHdr1 *pNext;            /* Next in hash table chain */
  PCache1 *pCache;          /* Cache that currently owns this page */
  PgHdr1 *pLruNext;         /* Next in circular LRU list of unpinned pages */
  PgHdr1 *pLruPrev;         /* Previous in LRU list of unpinned pages */
                            /* NB: pLruPrev is only valid if pLruNext!=0 */
};

/*
** A page is pinned if it is not on the LRU list.  To be "pinned" means
** that the page is in active use and must not be deallocated.
*/
#define PAGE_IS_PINNED(p)    ((p)->pLruNext==0)
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105

53106
53107
53108

53109
53110
53111
53112
53113
53114
53115

53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
  sqlite3_pcache_page *pPg,
  unsigned int iOld,
  unsigned int iNew
){
  PCache1 *pCache = (PCache1 *)p;
  PgHdr1 *pPage = (PgHdr1 *)pPg;
  PgHdr1 **pp;
  unsigned int h;
  assert( pPage->iKey==iOld );
  assert( pPage->pCache==pCache );


  pcache1EnterMutex(pCache->pGroup);


  h = iOld%pCache->nHash;
  pp = &pCache->apHash[h];
  while( (*pp)!=pPage ){
    pp = &(*pp)->pNext;
  }
  *pp = pPage->pNext;


  h = iNew%pCache->nHash;
  pPage->iKey = iNew;
  pPage->pNext = pCache->apHash[h];
  pCache->apHash[h] = pPage;
  if( iNew>pCache->iMaxKey ){
    pCache->iMaxKey = iNew;
  }

  pcache1LeaveMutex(pCache->pGroup);
}








|


>



>
|
|





>
|

|
|







53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235
53236
53237
  sqlite3_pcache_page *pPg,
  unsigned int iOld,
  unsigned int iNew
){
  PCache1 *pCache = (PCache1 *)p;
  PgHdr1 *pPage = (PgHdr1 *)pPg;
  PgHdr1 **pp;
  unsigned int hOld, hNew;
  assert( pPage->iKey==iOld );
  assert( pPage->pCache==pCache );
  assert( iOld!=iNew );               /* The page number really is changing */

  pcache1EnterMutex(pCache->pGroup);

  assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
  hOld = iOld%pCache->nHash;
  pp = &pCache->apHash[hOld];
  while( (*pp)!=pPage ){
    pp = &(*pp)->pNext;
  }
  *pp = pPage->pNext;

  assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
  hNew = iNew%pCache->nHash;
  pPage->iKey = iNew;
  pPage->pNext = pCache->apHash[hNew];
  pCache->apHash[hNew] = pPage;
  if( iNew>pCache->iMaxKey ){
    pCache->iMaxKey = iNew;
  }

  pcache1LeaveMutex(pCache->pGroup);
}

59743
59744
59745
59746
59747
59748
59749

59750
59751
59752
59753
59754
59755
59756
      rc = writeJournalHdr(pPager);
    }
  }

  if( rc!=SQLITE_OK ){
    sqlite3BitvecDestroy(pPager->pInJournal);
    pPager->pInJournal = 0;

  }else{
    assert( pPager->eState==PAGER_WRITER_LOCKED );
    pPager->eState = PAGER_WRITER_CACHEMOD;
  }

  return rc;
}







>







59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
59865
59866
59867
59868
      rc = writeJournalHdr(pPager);
    }
  }

  if( rc!=SQLITE_OK ){
    sqlite3BitvecDestroy(pPager->pInJournal);
    pPager->pInJournal = 0;
    pPager->journalOff = 0;
  }else{
    assert( pPager->eState==PAGER_WRITER_LOCKED );
    pPager->eState = PAGER_WRITER_CACHEMOD;
  }

  return rc;
}
68413
68414
68415
68416
68417
68418
68419
68420
68421
68422
68423
68424
68425
68426
68427
        }
        if( iFree2 ){
          if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
          sz2 = get2byte(&data[iFree2+2]);
          if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
          memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
          sz += sz2;
        }else if( NEVER(iFree+sz>usableSize) ){
          return SQLITE_CORRUPT_PAGE(pPage);
        }

        cbrk = top+sz;
        assert( cbrk+(iFree-top) <= usableSize );
        memmove(&data[cbrk], &data[top], iFree-top);
        for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){







|







68525
68526
68527
68528
68529
68530
68531
68532
68533
68534
68535
68536
68537
68538
68539
        }
        if( iFree2 ){
          if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
          sz2 = get2byte(&data[iFree2+2]);
          if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
          memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
          sz += sz2;
        }else if( iFree+sz>usableSize ){
          return SQLITE_CORRUPT_PAGE(pPage);
        }

        cbrk = top+sz;
        assert( cbrk+(iFree-top) <= usableSize );
        memmove(&data[cbrk], &data[top], iFree-top);
        for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
74759
74760
74761
74762
74763
74764
74765
74766
74767
74768
74769
74770
74771
74772
74773
74774
  int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
  int cntOld[NB+2];            /* Old index in b.apCell[] */
  int szNew[NB+2];             /* Combined size of cells placed on i-th page */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */
  u8 abDone[NB+2];             /* True after i'th new page is populated */
  Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
  Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
  u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
  CellArray b;                 /* Parsed information on cells being balanced */

  memset(abDone, 0, sizeof(abDone));
  memset(&b, 0, sizeof(b));
  pBt = pParent->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );







<
<







74871
74872
74873
74874
74875
74876
74877


74878
74879
74880
74881
74882
74883
74884
  int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
  int cntOld[NB+2];            /* Old index in b.apCell[] */
  int szNew[NB+2];             /* Combined size of cells placed on i-th page */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */
  u8 abDone[NB+2];             /* True after i'th new page is populated */
  Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */


  CellArray b;                 /* Parsed information on cells being balanced */

  memset(abDone, 0, sizeof(abDone));
  memset(&b, 0, sizeof(b));
  pBt = pParent->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
75184
75185
75186
75187
75188
75189
75190
75191
75192
75193
75194
75195
75196
75197
75198
75199
75200
75201
75202
75203
75204
75205
75206
75207
75208
75209
75210
75211
75212
75213
75214
75215
75216
75217
75218
75219



75220

75221

75222




75223
75224
75225
75226

75227
75228
75229
75230
75231
75232
75233

  /*
  ** Reassign page numbers so that the new pages are in ascending order.
  ** This helps to keep entries in the disk file in order so that a scan
  ** of the table is closer to a linear scan through the file. That in turn
  ** helps the operating system to deliver pages from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since n is never more
  ** than (NB+2) (a small constant), that should not be a problem.
  **
  ** When NB==3, this one optimization makes the database about 25% faster
  ** for large insertions and deletions.
  */
  for(i=0; i<nNew; i++){
    aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
    aPgFlags[i] = apNew[i]->pDbPage->flags;
    for(j=0; j<i; j++){
      if( NEVER(aPgno[j]==aPgno[i]) ){
        /* This branch is taken if the set of sibling pages somehow contains
        ** duplicate entries. This can happen if the database is corrupt.
        ** It would be simpler to detect this as part of the loop below, but
        ** we do the detection here in order to avoid populating the pager
        ** cache with two separate objects associated with the same
        ** page number.  */
        assert( CORRUPT_DB );
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;
      }
    }
  }
  for(i=0; i<nNew; i++){
    int iBest = 0;                /* aPgno[] index of page number to use */
    for(j=1; j<nNew; j++){
      if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
    }
    pgno = aPgOrder[iBest];



    aPgOrder[iBest] = 0xffffffff;

    if( iBest!=i ){

      if( iBest>i ){




        sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
      }
      sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
      apNew[i]->pgno = pgno;

    }
  }

  TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
         "%d(%d nc=%d) %d(%d nc=%d)\n",
    apNew[0]->pgno, szNew[0], cntNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,







|
|





|
|
<
<
<
<
<
<
<
<
|
<
<
|
<
<
|
|
|
|

|
>
>
>
|
>
|
>
|
>
>
>
>
|
<
|
|
>







75294
75295
75296
75297
75298
75299
75300
75301
75302
75303
75304
75305
75306
75307
75308
75309








75310


75311


75312
75313
75314
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330

75331
75332
75333
75334
75335
75336
75337
75338
75339
75340

  /*
  ** Reassign page numbers so that the new pages are in ascending order.
  ** This helps to keep entries in the disk file in order so that a scan
  ** of the table is closer to a linear scan through the file. That in turn
  ** helps the operating system to deliver pages from the disk more rapidly.
  **
  ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
  ** (5), that is not a performance concern.
  **
  ** When NB==3, this one optimization makes the database about 25% faster
  ** for large insertions and deletions.
  */
  for(i=0; i<nNew; i++){
    aPgno[i] = apNew[i]->pgno;
    assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );








    assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );


  }


  for(i=0; i<nNew-1; i++){
    int iB = i;
    for(j=i+1; j<nNew; j++){
      if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
    }

    /* If apNew[i] has a page number that is bigger than any of the
    ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
    ** entry that has the smallest page number (which we know to be
    ** entry apNew[iB]).
    */
    if( iB!=i ){
      Pgno pgnoA = apNew[i]->pgno;
      Pgno pgnoB = apNew[iB]->pgno;
      Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
      u16 fgA = apNew[i]->pDbPage->flags;
      u16 fgB = apNew[iB]->pDbPage->flags;
      sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
      sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);

      sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
      apNew[i]->pgno = pgnoB;
      apNew[iB]->pgno = pgnoA;
    }
  }

  TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
         "%d(%d nc=%d) %d(%d nc=%d)\n",
    apNew[0]->pgno, szNew[0], cntNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
  sqlite3 *db = pParse->db;
  Vdbe *p;
  p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
  if( p==0 ) return 0;
  memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
  p->db = db;
  if( db->pVdbe ){
    db->pVdbe->pPrev = p;
  }
  p->pNext = db->pVdbe;
  p->pPrev = 0;
  db->pVdbe = p;
  assert( p->eVdbeState==VDBE_INIT_STATE );
  p->pParse = pParse;
  pParse->pVdbe = p;
  assert( pParse->aLabel==0 );
  assert( pParse->nLabel==0 );
  assert( p->nOpAlloc==0 );







|

|
|







80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
  sqlite3 *db = pParse->db;
  Vdbe *p;
  p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
  if( p==0 ) return 0;
  memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
  p->db = db;
  if( db->pVdbe ){
    db->pVdbe->ppVPrev = &p->pVNext;
  }
  p->pVNext = db->pVdbe;
  p->ppVPrev = &db->pVdbe;
  db->pVdbe = p;
  assert( p->eVdbeState==VDBE_INIT_STATE );
  p->pParse = pParse;
  pParse->pVdbe = p;
  assert( pParse->aLabel==0 );
  assert( pParse->nLabel==0 );
  assert( p->nOpAlloc==0 );
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
** SQLITE_SCHEMA.  The statement was then reprepared in pA.
** This routine transfers the new bytecode in pA over to pB
** so that pB can be run again.  The old pB byte code is
** moved back to pA so that it will be cleaned up when pA is
** finalized.
*/
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
  Vdbe tmp, *pTmp;
  char *zTmp;
  assert( pA->db==pB->db );
  tmp = *pA;
  *pA = *pB;
  *pB = tmp;
  pTmp = pA->pNext;
  pA->pNext = pB->pNext;
  pB->pNext = pTmp;
  pTmp = pA->pPrev;
  pA->pPrev = pB->pPrev;
  pB->pPrev = pTmp;
  zTmp = pA->zSql;
  pA->zSql = pB->zSql;
  pB->zSql = zTmp;
#ifdef SQLITE_ENABLE_NORMALIZE
  zTmp = pA->zNormSql;
  pA->zNormSql = pB->zNormSql;
  pB->zNormSql = zTmp;







|





|
|
|
|
|
|







80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
** SQLITE_SCHEMA.  The statement was then reprepared in pA.
** This routine transfers the new bytecode in pA over to pB
** so that pB can be run again.  The old pB byte code is
** moved back to pA so that it will be cleaned up when pA is
** finalized.
*/
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
  Vdbe tmp, *pTmp, **ppTmp;
  char *zTmp;
  assert( pA->db==pB->db );
  tmp = *pA;
  *pA = *pB;
  *pB = tmp;
  pTmp = pA->pVNext;
  pA->pVNext = pB->pVNext;
  pB->pVNext = pTmp;
  ppTmp = pA->ppVPrev;
  pA->ppVPrev = pB->ppVPrev;
  pB->ppVPrev = ppTmp;
  zTmp = pA->zSql;
  pA->zSql = pB->zSql;
  pB->zSql = zTmp;
#ifdef SQLITE_ENABLE_NORMALIZE
  zTmp = pA->zNormSql;
  pA->zNormSql = pB->zNormSql;
  pB->zNormSql = zTmp;
81109
81110
81111
81112
81113
81114
81115

81116
81117
81118
81119
81120
81121
81122
  pCtx->pVdbe = 0;
  pCtx->isError = 0;
  pCtx->argc = nArg;
  pCtx->iOp = sqlite3VdbeCurrentAddr(v);
  addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
                           p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
  sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);

  return addr;
}

/*
** Add an opcode that includes the p4 value with a P4_INT64 or
** P4_REAL type.
*/







>







81216
81217
81218
81219
81220
81221
81222
81223
81224
81225
81226
81227
81228
81229
81230
  pCtx->pVdbe = 0;
  pCtx->isError = 0;
  pCtx->argc = nArg;
  pCtx->iOp = sqlite3VdbeCurrentAddr(v);
  addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
                           p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
  sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
  sqlite3MayAbort(pParse);
  return addr;
}

/*
** Add an opcode that includes the p4 value with a P4_INT64 or
** P4_REAL type.
*/
81444
81445
81446
81447
81448
81449
81450

81451
81452
81453
81454
81455
81456
81457

  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
     || opcode==OP_VDestroy
     || opcode==OP_VCreate
     || opcode==OP_ParseSchema

     || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
      && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
    if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;







>







81552
81553
81554
81555
81556
81557
81558
81559
81560
81561
81562
81563
81564
81565
81566

  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
     || opcode==OP_VDestroy
     || opcode==OP_VCreate
     || opcode==OP_ParseSchema
     || opcode==OP_Function || opcode==OP_PureFunc
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
      && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
    if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
83741
83742
83743
83744
83745
83746
83747
83748
83749
83750
83751
83752
83753
83754
83755
  p = db->pVdbe;
  while( p ){
    if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
      cnt++;
      if( p->readOnly==0 ) nWrite++;
      if( p->bIsReader ) nRead++;
    }
    p = p->pNext;
  }
  assert( cnt==db->nVdbeActive );
  assert( nWrite==db->nVdbeWrite );
  assert( nRead==db->nVdbeRead );
}
#else
#define checkActiveVdbeCnt(x)







|







83850
83851
83852
83853
83854
83855
83856
83857
83858
83859
83860
83861
83862
83863
83864
  p = db->pVdbe;
  while( p ){
    if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
      cnt++;
      if( p->readOnly==0 ) nWrite++;
      if( p->bIsReader ) nRead++;
    }
    p = p->pVNext;
  }
  assert( cnt==db->nVdbeActive );
  assert( nWrite==db->nVdbeWrite );
  assert( nRead==db->nVdbeRead );
}
#else
#define checkActiveVdbeCnt(x)
84321
84322
84323
84324
84325
84326
84327
84328
84329
84330
84331
84332
84333
84334
84335
84336
84337
84338
84339
84340
84341
84342

  assert( p!=0 );
  db = p->db;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  sqlite3VdbeClearObject(db, p);
  if( db->pnBytesFreed==0 ){
    if( p->pPrev ){
      p->pPrev->pNext = p->pNext;
    }else{
      assert( db->pVdbe==p );
      db->pVdbe = p->pNext;
    }
    if( p->pNext ){
      p->pNext->pPrev = p->pPrev;
    }
  }
  sqlite3DbNNFreeNN(db, p);
}

/*
** The cursor "p" has a pending seek operation that has not yet been







<
<
<
|
|
<
|
|







84430
84431
84432
84433
84434
84435
84436



84437
84438

84439
84440
84441
84442
84443
84444
84445
84446
84447

  assert( p!=0 );
  db = p->db;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  sqlite3VdbeClearObject(db, p);
  if( db->pnBytesFreed==0 ){



    assert( p->ppVPrev!=0 );
    *p->ppVPrev = p->pVNext;

    if( p->pVNext ){
      p->pVNext->ppVPrev = p->ppVPrev;
    }
  }
  sqlite3DbNNFreeNN(db, p);
}

/*
** The cursor "p" has a pending seek operation that has not yet been
85826
85827
85828
85829
85830
85831
85832
85833
85834
85835
85836
85837
85838
85839
85840
**
** Internally, this function just sets the Vdbe.expired flag on all
** prepared statements.  The flag is set to 1 for an immediate expiration
** and set to 2 for an advisory expiration.
*/
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
  Vdbe *p;
  for(p = db->pVdbe; p; p=p->pNext){
    p->expired = iCode+1;
  }
}

/*
** Return the database associated with the Vdbe.
*/







|







85931
85932
85933
85934
85935
85936
85937
85938
85939
85940
85941
85942
85943
85944
85945
**
** Internally, this function just sets the Vdbe.expired flag on all
** prepared statements.  The flag is set to 1 for an immediate expiration
** and set to 2 for an advisory expiration.
*/
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
  Vdbe *p;
  for(p = db->pVdbe; p; p=p->pVNext){
    p->expired = iCode+1;
  }
}

/*
** Return the database associated with the Vdbe.
*/
87845
87846
87847
87848
87849
87850
87851
87852
87853
87854
87855
87856
87857
87858
87859
    return 0;
  }
#endif
  sqlite3_mutex_enter(pDb->mutex);
  if( pStmt==0 ){
    pNext = (sqlite3_stmt*)pDb->pVdbe;
  }else{
    pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
  }
  sqlite3_mutex_leave(pDb->mutex);
  return pNext;
}

/*
** Return the value of a status counter for a prepared statement







|







87950
87951
87952
87953
87954
87955
87956
87957
87958
87959
87960
87961
87962
87963
87964
    return 0;
  }
#endif
  sqlite3_mutex_enter(pDb->mutex);
  if( pStmt==0 ){
    pNext = (sqlite3_stmt*)pDb->pVdbe;
  }else{
    pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext;
  }
  sqlite3_mutex_leave(pDb->mutex);
  return pNext;
}

/*
** Return the value of a status counter for a prepared statement
93297
93298
93299
93300
93301
93302
93303

93304
93305
93306


93307
93308
93309


93310
93311
93312
93313
93314
93315
93316
  }
  break;
}

/* Opcode: IfNotOpen P1 P2 * * *
** Synopsis: if( !csr[P1] ) goto P2
**

** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
*/
case OP_IfNotOpen: {        /* jump */


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
  if( !p->apCsr[pOp->p1] ){


    goto jump_to_p2_and_check_for_interrupt;
  }
  break;
}

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]







>
|


>
>

<
|
>
>







93402
93403
93404
93405
93406
93407
93408
93409
93410
93411
93412
93413
93414
93415

93416
93417
93418
93419
93420
93421
93422
93423
93424
93425
  }
  break;
}

/* Opcode: IfNotOpen P1 P2 * * *
** Synopsis: if( !csr[P1] ) goto P2
**
** If cursor P1 is not open or if P1 is set to a NULL row using the
** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
*/
case OP_IfNotOpen: {        /* jump */
  VdbeCursor *pCur;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  pCur = p->apCsr[pOp->p1];
  VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
  if( pCur==0 || pCur->nullRow ){
    goto jump_to_p2_and_check_for_interrupt;
  }
  break;
}

/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
94493
94494
94495
94496
94497
94498
94499
94500


94501
94502
94503
94504
94505
94506
94507
94508
94509
94510
94511
94512
94513


94514
94515
94516
94517
94518
94519
94520
  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  rc = sqlite3VdbeSorterNext(db, pC);
  goto next_tail;

case OP_Prev:          /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<ArraySize(p->aCounter) );


  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->deferredMoveto==0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
       || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
       || pC->seekOp==OP_NullRow);
  rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
  goto next_tail;

case OP_Next:          /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<ArraySize(p->aCounter) );


  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->deferredMoveto==0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
       || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
       || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid







|
>
>












|
>
>







94602
94603
94604
94605
94606
94607
94608
94609
94610
94611
94612
94613
94614
94615
94616
94617
94618
94619
94620
94621
94622
94623
94624
94625
94626
94627
94628
94629
94630
94631
94632
94633
  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  rc = sqlite3VdbeSorterNext(db, pC);
  goto next_tail;

case OP_Prev:          /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5==0
       || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
       || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->deferredMoveto==0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
       || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
       || pC->seekOp==OP_NullRow);
  rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
  goto next_tail;

case OP_Next:          /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5==0
       || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
       || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->deferredMoveto==0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
       || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
       || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
94713
94714
94715
94716
94717
94718
94719
94720
94721
94722
94723
94724
94725
94726
94727
94728
94729
94730
  assert( pC->deferredMoveto==0 );
  assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );

  /* The IdxRowid and Seek opcodes are combined because of the commonality
  ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
  rc = sqlite3VdbeCursorRestore(pC);

  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
  ** out from under the cursor.  That will never happens for an IdxRowid
  ** or Seek opcode */
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( !pC->nullRow ){
    rowid = 0;  /* Not needed.  Only used to silence a warning. */
    rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }







|
|
|
|







94826
94827
94828
94829
94830
94831
94832
94833
94834
94835
94836
94837
94838
94839
94840
94841
94842
94843
  assert( pC->deferredMoveto==0 );
  assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );

  /* The IdxRowid and Seek opcodes are combined because of the commonality
  ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
  rc = sqlite3VdbeCursorRestore(pC);

  /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
  ** since it was last positioned and an error (e.g. OOM or an IO error)
  ** occurs while trying to reposition it. */
  if( rc!=SQLITE_OK ) goto abort_due_to_error;

  if( !pC->nullRow ){
    rowid = 0;  /* Not needed.  Only used to silence a warning. */
    rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
106921
106922
106923
106924
106925
106926
106927

106928
106929
106930
106931
106932
106933
106934
    sqlite3ReleaseTempReg(pParse, r1);
    sqlite3ReleaseTempReg(pParse, r2);
  }
  if( pKeyInfo ){
    sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
  }
  if( addrOnce ){

    sqlite3VdbeJumpHere(v, addrOnce);
    /* Subroutine return */
    assert( ExprUseYSub(pExpr) );
    assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
            || pParse->nErr );
    sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
                      pExpr->y.sub.iAddr, 1);







>







107034
107035
107036
107037
107038
107039
107040
107041
107042
107043
107044
107045
107046
107047
107048
    sqlite3ReleaseTempReg(pParse, r1);
    sqlite3ReleaseTempReg(pParse, r2);
  }
  if( pKeyInfo ){
    sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
  }
  if( addrOnce ){
    sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
    sqlite3VdbeJumpHere(v, addrOnce);
    /* Subroutine return */
    assert( ExprUseYSub(pExpr) );
    assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
            || pParse->nErr );
    sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
                      pExpr->y.sub.iAddr, 1);
132884
132885
132886
132887
132888
132889
132890

132891
132892
132893
132894
132895
132896
132897
132898
132899

132900
132901
132902
132903
132904
132905
132906
132907
132908
132909
132910
132911
132912
132913
132914
132915
132916

132917
132918
132919
132920
132921
132922
132923
132924
132925
132926
132927
132928
132929
132930
132931
132932
132933
132934

132935
132936
132937
132938
132939
132940
132941
132942
132943

132944
132945
132946
132947
132948
132949
132950
132951
132952
132953
132954

132955
132956
132957
132958
132959
132960
132961
  ** Return or set the local value of the temp_store_directory flag.  Changing
  ** the value sets a specific directory to be used for temporary files.
  ** Setting to a null string reverts to the default temporary directory search.
  ** If temporary directory is changed, then invalidateTempStorage.
  **
  */
  case PragTyp_TEMP_STORE_DIRECTORY: {

    if( !zRight ){
      returnSingleText(v, sqlite3_temp_directory);
    }else{
#ifndef SQLITE_OMIT_WSD
      if( zRight[0] ){
        int res;
        rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
        if( rc!=SQLITE_OK || res==0 ){
          sqlite3ErrorMsg(pParse, "not a writable directory");

          goto pragma_out;
        }
      }
      if( SQLITE_TEMP_STORE==0
       || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
       || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
      ){
        invalidateTempStorage(pParse);
      }
      sqlite3_free(sqlite3_temp_directory);
      if( zRight[0] ){
        sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
      }else{
        sqlite3_temp_directory = 0;
      }
#endif /* SQLITE_OMIT_WSD */
    }

    break;
  }

#if SQLITE_OS_WIN
  /*
  **   PRAGMA data_store_directory
  **   PRAGMA data_store_directory = ""|"directory_name"
  **
  ** Return or set the local value of the data_store_directory flag.  Changing
  ** the value sets a specific directory to be used for database files that
  ** were specified with a relative pathname.  Setting to a null string reverts
  ** to the default database directory, which for database files specified with
  ** a relative path will probably be based on the current directory for the
  ** process.  Database file specified with an absolute path are not impacted
  ** by this setting, regardless of its value.
  **
  */
  case PragTyp_DATA_STORE_DIRECTORY: {

    if( !zRight ){
      returnSingleText(v, sqlite3_data_directory);
    }else{
#ifndef SQLITE_OMIT_WSD
      if( zRight[0] ){
        int res;
        rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
        if( rc!=SQLITE_OK || res==0 ){
          sqlite3ErrorMsg(pParse, "not a writable directory");

          goto pragma_out;
        }
      }
      sqlite3_free(sqlite3_data_directory);
      if( zRight[0] ){
        sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
      }else{
        sqlite3_data_directory = 0;
      }
#endif /* SQLITE_OMIT_WSD */
    }

    break;
  }
#endif

#if SQLITE_ENABLE_LOCKING_STYLE
  /*
  **   PRAGMA [schema.]lock_proxy_file







>









>

















>


















>









>











>







132998
132999
133000
133001
133002
133003
133004
133005
133006
133007
133008
133009
133010
133011
133012
133013
133014
133015
133016
133017
133018
133019
133020
133021
133022
133023
133024
133025
133026
133027
133028
133029
133030
133031
133032
133033
133034
133035
133036
133037
133038
133039
133040
133041
133042
133043
133044
133045
133046
133047
133048
133049
133050
133051
133052
133053
133054
133055
133056
133057
133058
133059
133060
133061
133062
133063
133064
133065
133066
133067
133068
133069
133070
133071
133072
133073
133074
133075
133076
133077
133078
133079
133080
133081
  ** Return or set the local value of the temp_store_directory flag.  Changing
  ** the value sets a specific directory to be used for temporary files.
  ** Setting to a null string reverts to the default temporary directory search.
  ** If temporary directory is changed, then invalidateTempStorage.
  **
  */
  case PragTyp_TEMP_STORE_DIRECTORY: {
    sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
    if( !zRight ){
      returnSingleText(v, sqlite3_temp_directory);
    }else{
#ifndef SQLITE_OMIT_WSD
      if( zRight[0] ){
        int res;
        rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
        if( rc!=SQLITE_OK || res==0 ){
          sqlite3ErrorMsg(pParse, "not a writable directory");
          sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
          goto pragma_out;
        }
      }
      if( SQLITE_TEMP_STORE==0
       || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
       || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
      ){
        invalidateTempStorage(pParse);
      }
      sqlite3_free(sqlite3_temp_directory);
      if( zRight[0] ){
        sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
      }else{
        sqlite3_temp_directory = 0;
      }
#endif /* SQLITE_OMIT_WSD */
    }
    sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
    break;
  }

#if SQLITE_OS_WIN
  /*
  **   PRAGMA data_store_directory
  **   PRAGMA data_store_directory = ""|"directory_name"
  **
  ** Return or set the local value of the data_store_directory flag.  Changing
  ** the value sets a specific directory to be used for database files that
  ** were specified with a relative pathname.  Setting to a null string reverts
  ** to the default database directory, which for database files specified with
  ** a relative path will probably be based on the current directory for the
  ** process.  Database file specified with an absolute path are not impacted
  ** by this setting, regardless of its value.
  **
  */
  case PragTyp_DATA_STORE_DIRECTORY: {
    sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
    if( !zRight ){
      returnSingleText(v, sqlite3_data_directory);
    }else{
#ifndef SQLITE_OMIT_WSD
      if( zRight[0] ){
        int res;
        rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
        if( rc!=SQLITE_OK || res==0 ){
          sqlite3ErrorMsg(pParse, "not a writable directory");
          sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
          goto pragma_out;
        }
      }
      sqlite3_free(sqlite3_data_directory);
      if( zRight[0] ){
        sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
      }else{
        sqlite3_data_directory = 0;
      }
#endif /* SQLITE_OMIT_WSD */
    }
    sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
    break;
  }
#endif

#if SQLITE_ENABLE_LOCKING_STYLE
  /*
  **   PRAGMA [schema.]lock_proxy_file
139422
139423
139424
139425
139426
139427
139428
139429
139430
139431

139432
139433
139434
139435
139436
139437
139438
139439
  sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */
  if( pSplit->pPrior ){

    sqlite3SelectDelete(db, pSplit->pPrior);
  }
  pSplit->pPrior = pPrior;
  pPrior->pNext = pSplit;
  sqlite3ExprListDelete(db, pPrior->pOrderBy);
  pPrior->pOrderBy = 0;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete







|


>
|







139542
139543
139544
139545
139546
139547
139548
139549
139550
139551
139552
139553
139554
139555
139556
139557
139558
139559
139560
  sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Reassemble the compound query so that it will be freed correctly
  ** by the calling function */
  if( pSplit->pPrior ){
    sqlite3ParserAddCleanup(pParse,
       (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
  }
  pSplit->pPrior = pPrior;
  pPrior->pNext = pSplit;
  sqlite3ExprListDelete(db, pPrior->pOrderBy);
  pPrior->pOrderBy = 0;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
139455
139456
139457
139458
139459
139460
139461
139462
139463
139464
139465
139466
139467
139468
139469
**
** The isOuterJoin column indicates that the replacement will occur into a
** position in the parent that NULL-able due to an OUTER JOIN.  Either the
** target slot in the parent is the right operand of a LEFT JOIN, or one of
** the left operands of a RIGHT JOIN.  In either case, we need to potentially
** bypass the substituted expression with OP_IfNullRow.
**
** Suppose the original expression integer constant.  Even though the table
** has the nullRow flag set, because the expression is an integer constant,
** it will not be NULLed out.  So instead, we insert an OP_IfNullRow opcode
** that checks to see if the nullRow flag is set on the table.  If the nullRow
** flag is set, then the value in the register is set to NULL and the original
** expression is bypassed.  If the nullRow flag is not set, then the original
** expression runs to populate the register.
**







|







139576
139577
139578
139579
139580
139581
139582
139583
139584
139585
139586
139587
139588
139589
139590
**
** The isOuterJoin column indicates that the replacement will occur into a
** position in the parent that NULL-able due to an OUTER JOIN.  Either the
** target slot in the parent is the right operand of a LEFT JOIN, or one of
** the left operands of a RIGHT JOIN.  In either case, we need to potentially
** bypass the substituted expression with OP_IfNullRow.
**
** Suppose the original expression is an integer constant. Even though the table
** has the nullRow flag set, because the expression is an integer constant,
** it will not be NULLed out.  So instead, we insert an OP_IfNullRow opcode
** that checks to see if the nullRow flag is set on the table.  If the nullRow
** flag is set, then the value in the register is set to NULL and the original
** expression is bypassed.  If the nullRow flag is not set, then the original
** expression runs to populate the register.
**
139912
139913
139914
139915
139916
139917
139918
139919
139920
139921
139922
139923
139924
139925
139926
139927
139928
139929
139930
139931
139932
139933
139934
139935
139936
139937
139938
**        function in the select list or ORDER BY clause, flattening
**        is not attempted.
**
**  (26)  The subquery may not be the right operand of a RIGHT JOIN.
**        See also (3) for restrictions on LEFT JOIN.
**
**  (27)  The subquery may not contain a FULL or RIGHT JOIN unless it
**        is the first element of the parent query.  This must be the
**        the case if:
**        (27a) the subquery is not compound query, and
**        (27b) the subquery is a compound query and the RIGHT JOIN occurs
**              in any arm of the compound query.  (See also (17g).)
**
**  (28)  The subquery is not a MATERIALIZED CTE.
**
**  (29)  Either the subquery is not the right-hand operand of a join with an
**        ON or USING clause nor the right-hand operand of a NATURAL JOIN, or
**        the right-most table within the FROM clause of the subquery
**        is not part of an outer join.
**
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
** uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.







|
<
|





<
<
<
<
<







140033
140034
140035
140036
140037
140038
140039
140040

140041
140042
140043
140044
140045
140046





140047
140048
140049
140050
140051
140052
140053
**        function in the select list or ORDER BY clause, flattening
**        is not attempted.
**
**  (26)  The subquery may not be the right operand of a RIGHT JOIN.
**        See also (3) for restrictions on LEFT JOIN.
**
**  (27)  The subquery may not contain a FULL or RIGHT JOIN unless it
**        is the first element of the parent query.  Two subcases:

**        (27a) the subquery is not a compound query.
**        (27b) the subquery is a compound query and the RIGHT JOIN occurs
**              in any arm of the compound query.  (See also (17g).)
**
**  (28)  The subquery is not a MATERIALIZED CTE.
**





**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
** uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
140028
140029
140030
140031
140032
140033
140034
140035
140036
140037
140038
140039
140040
140041
140042
140043
140044
140045
140046
140047
140048
140049
140050
140051
140052
140053
140054
140055
140056
140057
140058
140059
140060
140061
140062
140063
140064
140065
140066
140067
140068
140069
140070
140071
140072
140073
140074
140075
140076
140077
140078
140079
140080
140081
140082
140083
140084
140085
140086
140087
140088
     || (p->selFlags & SF_Distinct)!=0         /* (3d) */
     || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
    ){
      return 0;
    }
    isOuterJoin = 1;
  }
#ifdef SQLITE_EXTRA_IFNULLROW
  else if( iFrom>0 && !isAgg ){
    /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for
    ** every reference to any result column from subquery in a join, even
    ** though they are not necessary.  This will stress-test the OP_IfNullRow
    ** opcode. */
    isOuterJoin = -1;
  }
#endif

  assert( pSubSrc->nSrc>0 );  /* True by restriction (7) */
  if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
    return 0;   /* Restriction (27a) */
  }
  if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
    return 0;       /* (28) */
  }

  /* Restriction (29):
  **
  ** We do not want two constraints on the same term of the flattened
  ** query where one constraint has EP_InnerON and the other is EP_OuterON.
  ** To prevent this, one or the other of the following conditions must be
  ** false:
  **
  **   (29a)  The right-most entry in the FROM clause of the subquery
  **          must not be part of an outer join.
  **
  **   (29b)  The subquery itself must not be the right operand of a
  **          NATURAL join or a join that as an ON or USING clause.
  **
  ** These conditions are sufficient to keep an EP_OuterON from being
  ** flattened into an EP_InnerON.  Restrictions (3a) and (27a) prevent
  ** an EP_InnerON from being flattened into an EP_OuterON.
  */
  if( pSubSrc->nSrc>=2
   && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0
  ){
    if( (pSubitem->fg.jointype & JT_NATURAL)!=0
     || pSubitem->fg.isUsing
     || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */
     || pSubitem->fg.isOn
    ){
      return 0;
    }
  }

  /* Restriction (17): If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
  if( pSub->pPrior ){
    if( pSub->pOrderBy ){







<
<
<
<
<
<
<
<
<









<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







140143
140144
140145
140146
140147
140148
140149









140150
140151
140152
140153
140154
140155
140156
140157
140158





























140159
140160
140161
140162
140163
140164
140165
     || (p->selFlags & SF_Distinct)!=0         /* (3d) */
     || (pSubitem->fg.jointype & JT_RIGHT)!=0  /* (26) */
    ){
      return 0;
    }
    isOuterJoin = 1;
  }










  assert( pSubSrc->nSrc>0 );  /* True by restriction (7) */
  if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
    return 0;   /* Restriction (27a) */
  }
  if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
    return 0;       /* (28) */
  }






























  /* Restriction (17): If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
  if( pSub->pPrior ){
    if( pSub->pOrderBy ){
144182
144183
144184
144185
144186
144187
144188

















144189
144190
144191
144192
144193
144194
144195

  /* if we are not initializing,
  ** build the sqlite_schema entry
  */
  if( !db->init.busy ){
    Vdbe *v;
    char *z;


















    /* Make an entry in the sqlite_schema table */
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
    testcase( z==0 );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







144259
144260
144261
144262
144263
144264
144265
144266
144267
144268
144269
144270
144271
144272
144273
144274
144275
144276
144277
144278
144279
144280
144281
144282
144283
144284
144285
144286
144287
144288
144289

  /* if we are not initializing,
  ** build the sqlite_schema entry
  */
  if( !db->init.busy ){
    Vdbe *v;
    char *z;

    /* If this is a new CREATE TABLE statement, and if shadow tables
    ** are read-only, and the trigger makes a change to a shadow table,
    ** then raise an error - do not allow the trigger to be created. */
    if( sqlite3ReadOnlyShadowTables(db) ){
      TriggerStep *pStep;
      for(pStep=pTrig->step_list; pStep; pStep=pStep->pNext){
        if( pStep->zTarget!=0
         && sqlite3ShadowTableName(db, pStep->zTarget)
        ){
          sqlite3ErrorMsg(pParse,
            "trigger \"%s\" may not write to shadow table \"%s\"",
            pTrig->zName, pStep->zTarget);
          goto triggerfinish_cleanup;
        }
      }
    }

    /* Make an entry in the sqlite_schema table */
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
    testcase( z==0 );
149387
149388
149389
149390
149391
149392
149393

149394
149395
149396
149397
149398
149399
149400
#define WHERE_IN_EARLYOUT  0x00040000  /* Perhaps quit IN loops early */
#define WHERE_BIGNULL_SORT 0x00080000  /* Column nEq of index is BIGNULL */
#define WHERE_IN_SEEKSCAN  0x00100000  /* Seek-scan optimization for IN */
#define WHERE_TRANSCONS    0x00200000  /* Uses a transitive constraint */
#define WHERE_BLOOMFILTER  0x00400000  /* Consider using a Bloom-filter */
#define WHERE_SELFCULL     0x00800000  /* nOut reduced by extra WHERE terms */
#define WHERE_OMIT_OFFSET  0x01000000  /* Set offset counter to zero */


#endif /* !defined(SQLITE_WHEREINT_H) */

/************** End of whereInt.h ********************************************/
/************** Continuing where we left off in wherecode.c ******************/

#ifndef SQLITE_OMIT_EXPLAIN







>







149481
149482
149483
149484
149485
149486
149487
149488
149489
149490
149491
149492
149493
149494
149495
#define WHERE_IN_EARLYOUT  0x00040000  /* Perhaps quit IN loops early */
#define WHERE_BIGNULL_SORT 0x00080000  /* Column nEq of index is BIGNULL */
#define WHERE_IN_SEEKSCAN  0x00100000  /* Seek-scan optimization for IN */
#define WHERE_TRANSCONS    0x00200000  /* Uses a transitive constraint */
#define WHERE_BLOOMFILTER  0x00400000  /* Consider using a Bloom-filter */
#define WHERE_SELFCULL     0x00800000  /* nOut reduced by extra WHERE terms */
#define WHERE_OMIT_OFFSET  0x01000000  /* Set offset counter to zero */
#define WHERE_VIEWSCAN     0x02000000  /* A full-scan of a VIEW or subquery */

#endif /* !defined(SQLITE_WHEREINT_H) */

/************** End of whereInt.h ********************************************/
/************** Continuing where we left off in wherecode.c ******************/

#ifndef SQLITE_OMIT_EXPLAIN
154889
154890
154891
154892
154893
154894
154895





































154896
154897
154898
154899
154900
154901
154902
154903
154904
154905
154906
154907
154908
154909
154910
154911
154912
154913
154914
154915
154916
154917
154918
154919
154920
154921
154922
154923
154924
154925
154926
154927
154928
  sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
  sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
}
#else
#define whereTraceIndexInfoInputs(A)
#define whereTraceIndexInfoOutputs(A)
#endif






































#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
  const WhereTerm *pTerm,        /* WHERE clause term to check */
  const SrcItem *pSrc,           /* Table we are trying to access */
  const Bitmask notReady         /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
  assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
  if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
    testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
    testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
    testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
    testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
    if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
     || pTerm->pExpr->w.iJoin != pSrc->iCursor
    ){
      return 0;  /* See tag-20191211-001 */
    }
  }
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
  if( pTerm->u.x.leftColumn<0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  testcase( pTerm->pExpr->op==TK_IS );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















|
<
<
|
<
<
<
|
|
<







154984
154985
154986
154987
154988
154989
154990
154991
154992
154993
154994
154995
154996
154997
154998
154999
155000
155001
155002
155003
155004
155005
155006
155007
155008
155009
155010
155011
155012
155013
155014
155015
155016
155017
155018
155019
155020
155021
155022
155023
155024
155025
155026
155027
155028
155029
155030
155031
155032
155033
155034
155035
155036
155037
155038
155039
155040
155041
155042
155043
155044


155045



155046
155047

155048
155049
155050
155051
155052
155053
155054
  sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
  sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
}
#else
#define whereTraceIndexInfoInputs(A)
#define whereTraceIndexInfoOutputs(A)
#endif

/*
** We know that pSrc is an operand of an outer join.  Return true if
** pTerm is a constraint that is compatible with that join.
**
** pTerm must be EP_OuterON if pSrc is the right operand of an
** outer join.  pTerm can be either EP_OuterON or EP_InnerON if pSrc
** is the left operand of a RIGHT join.
**
** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
** for an example of a WHERE clause constraints that may not be used on
** the right table of a RIGHT JOIN because the constraint implies a
** not-NULL condition on the left table of the RIGHT JOIN.
*/
static int constraintCompatibleWithOuterJoin(
  const WhereTerm *pTerm,       /* WHERE clause term to check */
  const SrcItem *pSrc           /* Table we are trying to access */
){
  assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
  testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
  testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
  testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
  testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
  if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
   || pTerm->pExpr->w.iJoin != pSrc->iCursor
  ){
    return 0;
  }
  if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
   && ExprHasProperty(pTerm->pExpr, EP_InnerON)
  ){
    return 0;
  }
  return 1;
}



#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
  const WhereTerm *pTerm,        /* WHERE clause term to check */
  const SrcItem *pSrc,           /* Table we are trying to access */
  const Bitmask notReady         /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
  assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
  if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0


   && !constraintCompatibleWithOuterJoin(pTerm,pSrc)



  ){
    return 0;  /* See https://sqlite.org/forum/forumpost/51e6959f61 */

  }
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
  if( pTerm->u.x.leftColumn<0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  testcase( pTerm->pExpr->op==TK_IS );
155326
155327
155328
155329
155330
155331
155332
155333
155334
155335
155336
155337
155338
155339
155340
155341
155342
155343
155344
155345
155346
155347
155348
155349
155350
155351
155352
155353
155354
155355
    testcase( pTerm->eOperator & WO_ALL );
    if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;

    assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
    assert( pTerm->u.x.leftColumn>=XN_ROWID );
    assert( pTerm->u.x.leftColumn<pTab->nCol );

    /* tag-20191211-002: WHERE-clause constraints are not useful to the
    ** right-hand table of a LEFT JOIN nor to the either table of a
    ** RIGHT JOIN.  See tag-20191211-001 for the
    ** equivalent restriction for ordinary tables. */
    if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
      testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
      testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
      testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
      testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) );
      testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
      if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
       || pTerm->pExpr->w.iJoin != pSrc->iCursor
      ){
        continue;
      }
    }
    nTerm++;
    pTerm->wtFlags |= TERM_OK;
  }

  /* If the ORDER BY clause contains only columns in the current
  ** virtual table then allocate space for the aOrderBy part of







<
<
<
<
<
|
<
<
<
|
<
<
<
|
|
<







155452
155453
155454
155455
155456
155457
155458





155459



155460



155461
155462

155463
155464
155465
155466
155467
155468
155469
    testcase( pTerm->eOperator & WO_ALL );
    if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;

    assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
    assert( pTerm->u.x.leftColumn>=XN_ROWID );
    assert( pTerm->u.x.leftColumn<pTab->nCol );





    if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0



     && !constraintCompatibleWithOuterJoin(pTerm,pSrc)



    ){
      continue;

    }
    nTerm++;
    pTerm->wtFlags |= TERM_OK;
  }

  /* If the ORDER BY clause contains only columns in the current
  ** virtual table then allocate space for the aOrderBy part of
156999
157000
157001
157002
157003
157004
157005
157006
157007
157008
157009
157010
157011
157012
157013
157014
157015
157016
157017
157018
157019
157020
157021
157022
157023
157024
157025
157026
157027
157028
157029
157030
157031
157032
157033
157034
157035
157036
157037
157038
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;

    /* Do not allow the upper bound of a LIKE optimization range constraint
    ** to mix with a lower range bound from some other source */
    if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;

    /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
    ** be used by the right table of a LEFT JOIN nor by the left table of a
    ** RIGHT JOIN.  Only constraints in the ON clause are allowed.
    ** See tag-20191211-002 for the vtab equivalent.
    **
    ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f
    ** for an example of a WHERE clause constraints that may not be used on
    ** the right table of a RIGHT JOIN because the constraint implies a
    ** not-NULL condition on the left table of the RIGHT JOIN.
    **
    ** 2022-06-10: The same condition applies to termCanDriveIndex() above.
    ** https://sqlite.org/forum/forumpost/51e6959f61
    */
    if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
      testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
      testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
      testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
      testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
      testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
      if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
       || pTerm->pExpr->w.iJoin != pSrc->iCursor
      ){
        continue;
      }
    }

    if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
      pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
    }else{
      pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
    }
    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;







<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
<
<
|
|
|
<
<







157113
157114
157115
157116
157117
157118
157119













157120



157121



157122
157123
157124


157125
157126
157127
157128
157129
157130
157131
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;

    /* Do not allow the upper bound of a LIKE optimization range constraint
    ** to mix with a lower range bound from some other source */
    if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;














    if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0



     && !constraintCompatibleWithOuterJoin(pTerm,pSrc)



    ){
      continue;
    }


    if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
      pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
    }else{
      pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
    }
    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
157610
157611
157612
157613
157614
157615
157616



157617
157618
157619
157620
157621
157622
157623
      ** better.
      */
#ifdef SQLITE_ENABLE_STAT4
      pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
#else
      pNew->rRun = rSize + 16;
#endif



      ApplyCostMultiplier(pNew->rRun, pTab->costMult);
      whereLoopOutputAdjust(pWC, pNew, rSize);
      rc = whereLoopInsert(pBuilder, pNew);
      pNew->nOut = rSize;
      if( rc ) break;
    }else{
      Bitmask m;







>
>
>







157703
157704
157705
157706
157707
157708
157709
157710
157711
157712
157713
157714
157715
157716
157717
157718
157719
      ** better.
      */
#ifdef SQLITE_ENABLE_STAT4
      pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
#else
      pNew->rRun = rSize + 16;
#endif
      if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){
        pNew->wsFlags |= WHERE_VIEWSCAN;
      }
      ApplyCostMultiplier(pNew->rRun, pTab->costMult);
      whereLoopOutputAdjust(pWC, pNew, rSize);
      rc = whereLoopInsert(pBuilder, pNew);
      pNew->nOut = rSize;
      if( rc ) break;
    }else{
      Bitmask m;
158989
158990
158991
158992
158993
158994
158995







158996
158997
158998
158999
159000
159001
159002
              ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
               aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
               rUnsorted, rCost));
        }else{
          rCost = rUnsorted;
          rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
        }








        /* Check to see if pWLoop should be added to the set of
        ** mxChoice best-so-far paths.
        **
        ** First look for an existing path among best-so-far paths
        ** that covers the same set of loops and has the same isOrdered
        ** setting as the current path candidate.







>
>
>
>
>
>
>







159085
159086
159087
159088
159089
159090
159091
159092
159093
159094
159095
159096
159097
159098
159099
159100
159101
159102
159103
159104
159105
              ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
               aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
               rUnsorted, rCost));
        }else{
          rCost = rUnsorted;
          rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
        }

        /* TUNING:  A full-scan of a VIEW or subquery in the outer loop
        ** is not so bad. */
        if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 ){
          rCost += -10;
          nOut += -30;
        }

        /* Check to see if pWLoop should be added to the set of
        ** mxChoice best-so-far paths.
        **
        ** First look for an existing path among best-so-far paths
        ** that covers the same set of loops and has the same isOrdered
        ** setting as the current path candidate.
171752
171753
171754
171755
171756
171757
171758

171759
171760
171761
171762
171763
171764
171765

/*
** Configuration settings for an individual database connection
*/
SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc;

  va_start(ap, op);
  switch( op ){
    case SQLITE_DBCONFIG_MAINDBNAME: {
      /* IMP: R-06824-28531 */
      /* IMP: R-36257-52125 */
      db->aDb[0].zDbSName = va_arg(ap,char*);
      rc = SQLITE_OK;







>







171855
171856
171857
171858
171859
171860
171861
171862
171863
171864
171865
171866
171867
171868
171869

/*
** Configuration settings for an individual database connection
*/
SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc;
  sqlite3_mutex_enter(db->mutex);
  va_start(ap, op);
  switch( op ){
    case SQLITE_DBCONFIG_MAINDBNAME: {
      /* IMP: R-06824-28531 */
      /* IMP: R-36257-52125 */
      db->aDb[0].zDbSName = va_arg(ap,char*);
      rc = SQLITE_OK;
171817
171818
171819
171820
171821
171822
171823

171824
171825
171826
171827
171828
171829
171830
          break;
        }
      }
      break;
    }
  }
  va_end(ap);

  return rc;
}

/*
** This is the default collating function named "BINARY" which is always
** available.
*/







>







171921
171922
171923
171924
171925
171926
171927
171928
171929
171930
171931
171932
171933
171934
171935
          break;
        }
      }
      break;
    }
  }
  va_end(ap);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** This is the default collating function named "BINARY" which is always
** available.
*/
177172
177173
177174
177175
177176
177177
177178
177179
177180
177181
177182
177183
177184
177185
177186
struct Fts3MultiSegReader {
  /* Used internally by sqlite3Fts3SegReaderXXX() calls */
  Fts3SegReader **apSegment;      /* Array of Fts3SegReader objects */
  int nSegment;                   /* Size of apSegment array */
  int nAdvance;                   /* How many seg-readers to advance */
  Fts3SegFilter *pFilter;         /* Pointer to filter object */
  char *aBuffer;                  /* Buffer to merge doclists in */
  int nBuffer;                    /* Allocated size of aBuffer[] in bytes */

  int iColFilter;                 /* If >=0, filter for this column */
  int bRestart;

  /* Used by fts3.c only. */
  int nCost;                      /* Cost of running iterator */
  int bLookup;                    /* True if a lookup of a single entry. */







|







177277
177278
177279
177280
177281
177282
177283
177284
177285
177286
177287
177288
177289
177290
177291
struct Fts3MultiSegReader {
  /* Used internally by sqlite3Fts3SegReaderXXX() calls */
  Fts3SegReader **apSegment;      /* Array of Fts3SegReader objects */
  int nSegment;                   /* Size of apSegment array */
  int nAdvance;                   /* How many seg-readers to advance */
  Fts3SegFilter *pFilter;         /* Pointer to filter object */
  char *aBuffer;                  /* Buffer to merge doclists in */
  i64 nBuffer;                    /* Allocated size of aBuffer[] in bytes */

  int iColFilter;                 /* If >=0, filter for this column */
  int bRestart;

  /* Used by fts3.c only. */
  int nCost;                      /* Cost of running iterator */
  int bLookup;                    /* True if a lookup of a single entry. */
179868
179869
179870
179871
179872
179873
179874
179875
179876
179877
179878
179879
179880
179881
179882
    ** not true for order=DESC. For example, a doclist containing (1, -1)
    ** may be smaller than (-1), as in the first example the -1 may be stored
    ** as a single-byte delta, whereas in the second it must be stored as a
    ** FTS3_VARINT_MAX byte varint.
    **
    ** Similar padding is added in the fts3DoclistOrMerge() function.
    */
    pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
      memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
    }else{
      return SQLITE_NOMEM;
    }







|







179973
179974
179975
179976
179977
179978
179979
179980
179981
179982
179983
179984
179985
179986
179987
    ** not true for order=DESC. For example, a doclist containing (1, -1)
    ** may be smaller than (-1), as in the first example the -1 may be stored
    ** as a single-byte delta, whereas in the second it must be stored as a
    ** FTS3_VARINT_MAX byte varint.
    **
    ** Similar padding is added in the fts3DoclistOrMerge() function.
    */
    pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
      memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
    }else{
      return SQLITE_NOMEM;
    }
181725
181726
181727
181728
181729
181730
181731
181732
181733
181734
181735
181736
181737
181738
181739
        }
      }

      /* Check if the current entries really are a phrase match */
      if( bEof==0 ){
        int nList = 0;
        int nByte = a[p->nToken-1].nList;
        char *aDoclist = sqlite3_malloc(nByte+FTS3_BUFFER_PADDING);
        if( !aDoclist ) return SQLITE_NOMEM;
        memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
        memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);

        for(i=0; i<(p->nToken-1); i++){
          if( a[i].bIgnore==0 ){
            char *pL = a[i].pList;







|







181830
181831
181832
181833
181834
181835
181836
181837
181838
181839
181840
181841
181842
181843
181844
        }
      }

      /* Check if the current entries really are a phrase match */
      if( bEof==0 ){
        int nList = 0;
        int nByte = a[p->nToken-1].nList;
        char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING);
        if( !aDoclist ) return SQLITE_NOMEM;
        memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
        memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);

        for(i=0; i<(p->nToken-1); i++){
          if( a[i].bIgnore==0 ){
            char *pL = a[i].pList;
185961
185962
185963
185964
185965
185966
185967
185968
185969
185970
185971
185972
185973
185974
185975
    }

    if( c->iOffset>iStartOffset ){
      int n = c->iOffset-iStartOffset;
      if( n>c->nAllocated ){
        char *pNew;
        c->nAllocated = n+20;
        pNew = sqlite3_realloc(c->zToken, c->nAllocated);
        if( !pNew ) return SQLITE_NOMEM;
        c->zToken = pNew;
      }
      porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
      *pzToken = c->zToken;
      *piStartOffset = iStartOffset;
      *piEndOffset = c->iOffset;







|







186066
186067
186068
186069
186070
186071
186072
186073
186074
186075
186076
186077
186078
186079
186080
    }

    if( c->iOffset>iStartOffset ){
      int n = c->iOffset-iStartOffset;
      if( n>c->nAllocated ){
        char *pNew;
        c->nAllocated = n+20;
        pNew = sqlite3_realloc64(c->zToken, c->nAllocated);
        if( !pNew ) return SQLITE_NOMEM;
        c->zToken = pNew;
      }
      porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
      *pzToken = c->zToken;
      *piStartOffset = iStartOffset;
      *piEndOffset = c->iOffset;
186713
186714
186715
186716
186717
186718
186719
186720
186721
186722
186723
186724
186725
186726
186727
    }

    if( c->iOffset>iStartOffset ){
      int i, n = c->iOffset-iStartOffset;
      if( n>c->nTokenAllocated ){
        char *pNew;
        c->nTokenAllocated = n+20;
        pNew = sqlite3_realloc(c->pToken, c->nTokenAllocated);
        if( !pNew ) return SQLITE_NOMEM;
        c->pToken = pNew;
      }
      for(i=0; i<n; i++){
        /* TODO(shess) This needs expansion to handle UTF-8
        ** case-insensitivity.
        */







|







186818
186819
186820
186821
186822
186823
186824
186825
186826
186827
186828
186829
186830
186831
186832
    }

    if( c->iOffset>iStartOffset ){
      int i, n = c->iOffset-iStartOffset;
      if( n>c->nTokenAllocated ){
        char *pNew;
        c->nTokenAllocated = n+20;
        pNew = sqlite3_realloc64(c->pToken, c->nTokenAllocated);
        if( !pNew ) return SQLITE_NOMEM;
        c->pToken = pNew;
      }
      for(i=0; i<n; i++){
        /* TODO(shess) This needs expansion to handle UTF-8
        ** case-insensitivity.
        */
187875
187876
187877
187878
187879
187880
187881
187882
187883
187884
187885
187886
187887
187888
187889
187890
187891
187892
187893
187894
187895
187896
187897
187898
187899
187900
187901
187902
187903
187904
187905
  PendingList **pp,               /* IN/OUT: Pointer to PendingList struct */
  sqlite3_int64 i                 /* Value to append to data */
){
  PendingList *p = *pp;

  /* Allocate or grow the PendingList as required. */
  if( !p ){
    p = sqlite3_malloc(sizeof(*p) + 100);
    if( !p ){
      return SQLITE_NOMEM;
    }
    p->nSpace = 100;
    p->aData = (char *)&p[1];
    p->nData = 0;
  }
  else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
    int nNew = p->nSpace * 2;
    p = sqlite3_realloc(p, sizeof(*p) + nNew);
    if( !p ){
      sqlite3_free(*pp);
      *pp = 0;
      return SQLITE_NOMEM;
    }
    p->nSpace = nNew;
    p->aData = (char *)&p[1];
  }

  /* Append the new serialized varint to the end of the list. */
  p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
  p->aData[p->nData] = '\0';
  *pp = p;







|








|
|





|







187980
187981
187982
187983
187984
187985
187986
187987
187988
187989
187990
187991
187992
187993
187994
187995
187996
187997
187998
187999
188000
188001
188002
188003
188004
188005
188006
188007
188008
188009
188010
  PendingList **pp,               /* IN/OUT: Pointer to PendingList struct */
  sqlite3_int64 i                 /* Value to append to data */
){
  PendingList *p = *pp;

  /* Allocate or grow the PendingList as required. */
  if( !p ){
    p = sqlite3_malloc64(sizeof(*p) + 100);
    if( !p ){
      return SQLITE_NOMEM;
    }
    p->nSpace = 100;
    p->aData = (char *)&p[1];
    p->nData = 0;
  }
  else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
    i64 nNew = p->nSpace * 2;
    p = sqlite3_realloc64(p, sizeof(*p) + nNew);
    if( !p ){
      sqlite3_free(*pp);
      *pp = 0;
      return SQLITE_NOMEM;
    }
    p->nSpace = (int)nNew;
    p->aData = (char *)&p[1];
  }

  /* Append the new serialized varint to the end of the list. */
  p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
  p->aData[p->nData] = '\0';
  *pp = p;
188448
188449
188450
188451
188452
188453
188454
188455
188456
188457
188458
188459
188460
188461
188462
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    *pnBlob = nByte;
    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
      if( !aByte ){
        rc = SQLITE_NOMEM;
      }else{
        if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
          nByte = FTS3_NODE_CHUNKSIZE;
          *pnLoad = nByte;
        }







|







188553
188554
188555
188556
188557
188558
188559
188560
188561
188562
188563
188564
188565
188566
188567
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    *pnBlob = nByte;
    if( paBlob ){
      char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING);
      if( !aByte ){
        rc = SQLITE_NOMEM;
      }else{
        if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
          nByte = FTS3_NODE_CHUNKSIZE;
          *pnLoad = nByte;
        }
188565
188566
188567
188568
188569
188570
188571
188572
188573
188574
188575
188576
188577
188578
188579
188580
188581
188582
188583
188584
188585
188586
188587
        char *aCopy;
        PendingList *pList = (PendingList *)fts3HashData(pElem);
        int nCopy = pList->nData+1;

        int nTerm = fts3HashKeysize(pElem);
        if( (nTerm+1)>pReader->nTermAlloc ){
          sqlite3_free(pReader->zTerm);
          pReader->zTerm = (char*)sqlite3_malloc((nTerm+1)*2);
          if( !pReader->zTerm ) return SQLITE_NOMEM;
          pReader->nTermAlloc = (nTerm+1)*2;
        }
        memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm);
        pReader->zTerm[nTerm] = '\0';
        pReader->nTerm = nTerm;

        aCopy = (char*)sqlite3_malloc(nCopy);
        if( !aCopy ) return SQLITE_NOMEM;
        memcpy(aCopy, pList->aData, nCopy);
        pReader->nNode = pReader->nDoclist = nCopy;
        pReader->aNode = pReader->aDoclist = aCopy;
        pReader->ppNextElem++;
        assert( pReader->aNode );
      }







|







|







188670
188671
188672
188673
188674
188675
188676
188677
188678
188679
188680
188681
188682
188683
188684
188685
188686
188687
188688
188689
188690
188691
188692
        char *aCopy;
        PendingList *pList = (PendingList *)fts3HashData(pElem);
        int nCopy = pList->nData+1;

        int nTerm = fts3HashKeysize(pElem);
        if( (nTerm+1)>pReader->nTermAlloc ){
          sqlite3_free(pReader->zTerm);
          pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2);
          if( !pReader->zTerm ) return SQLITE_NOMEM;
          pReader->nTermAlloc = (nTerm+1)*2;
        }
        memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm);
        pReader->zTerm[nTerm] = '\0';
        pReader->nTerm = nTerm;

        aCopy = (char*)sqlite3_malloc64(nCopy);
        if( !aCopy ) return SQLITE_NOMEM;
        memcpy(aCopy, pList->aData, nCopy);
        pReader->nNode = pReader->nDoclist = nCopy;
        pReader->aNode = pReader->aDoclist = aCopy;
        pReader->ppNextElem++;
        assert( pReader->aNode );
      }
188860
188861
188862
188863
188864
188865
188866
188867
188868
188869
188870
188871
188872
188873
188874
#endif

  if( iStartLeaf==0 ){
    if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
    nExtra = nRoot + FTS3_NODE_PADDING;
  }

  pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
  if( !pReader ){
    return SQLITE_NOMEM;
  }
  memset(pReader, 0, sizeof(Fts3SegReader));
  pReader->iIdx = iAge;
  pReader->bLookup = bLookup!=0;
  pReader->iStartBlock = iStartLeaf;







|







188965
188966
188967
188968
188969
188970
188971
188972
188973
188974
188975
188976
188977
188978
188979
#endif

  if( iStartLeaf==0 ){
    if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
    nExtra = nRoot + FTS3_NODE_PADDING;
  }

  pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra);
  if( !pReader ){
    return SQLITE_NOMEM;
  }
  memset(pReader, 0, sizeof(Fts3SegReader));
  pReader->iIdx = iAge;
  pReader->bLookup = bLookup!=0;
  pReader->iStartBlock = iStartLeaf;
188952
188953
188954
188955
188956
188957
188958
188959
188960
188961
188962
188963
188964
188965
188966
    for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
      char *zKey = (char *)fts3HashKey(pE);
      int nKey = fts3HashKeysize(pE);
      if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
        if( nElem==nAlloc ){
          Fts3HashElem **aElem2;
          nAlloc += 16;
          aElem2 = (Fts3HashElem **)sqlite3_realloc(
              aElem, nAlloc*sizeof(Fts3HashElem *)
          );
          if( !aElem2 ){
            rc = SQLITE_NOMEM;
            nElem = 0;
            break;
          }







|







189057
189058
189059
189060
189061
189062
189063
189064
189065
189066
189067
189068
189069
189070
189071
    for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
      char *zKey = (char *)fts3HashKey(pE);
      int nKey = fts3HashKeysize(pE);
      if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
        if( nElem==nAlloc ){
          Fts3HashElem **aElem2;
          nAlloc += 16;
          aElem2 = (Fts3HashElem **)sqlite3_realloc64(
              aElem, nAlloc*sizeof(Fts3HashElem *)
          );
          if( !aElem2 ){
            rc = SQLITE_NOMEM;
            nElem = 0;
            break;
          }
189286
189287
189288
189289
189290
189291
189292
189293
189294
189295
189296
189297
189298
189299
189300
189301
189302
189303
189304
189305
189306
189307
189308
189309
189310
189311
189312
189313
189314
189315
189316
189317
189318
        ** and the static node buffer (p->nNodeSize bytes) is not large
        ** enough. Use a separately malloced buffer instead This wastes
        ** p->nNodeSize bytes, but since this scenario only comes about when
        ** the database contain two terms that share a prefix of almost 2KB,
        ** this is not expected to be a serious problem.
        */
        assert( pTree->aData==(char *)&pTree[1] );
        pTree->aData = (char *)sqlite3_malloc(nReq);
        if( !pTree->aData ){
          return SQLITE_NOMEM;
        }
      }

      if( pTree->zTerm ){
        /* There is no prefix-length field for first term in a node */
        nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
      }

      nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
      memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
      pTree->nData = nData + nSuffix;
      pTree->nEntry++;

      if( isCopyTerm ){
        if( pTree->nMalloc<nTerm ){
          char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
          if( !zNew ){
            return SQLITE_NOMEM;
          }
          pTree->nMalloc = nTerm*2;
          pTree->zMalloc = zNew;
        }
        pTree->zTerm = pTree->zMalloc;







|

















|







189391
189392
189393
189394
189395
189396
189397
189398
189399
189400
189401
189402
189403
189404
189405
189406
189407
189408
189409
189410
189411
189412
189413
189414
189415
189416
189417
189418
189419
189420
189421
189422
189423
        ** and the static node buffer (p->nNodeSize bytes) is not large
        ** enough. Use a separately malloced buffer instead This wastes
        ** p->nNodeSize bytes, but since this scenario only comes about when
        ** the database contain two terms that share a prefix of almost 2KB,
        ** this is not expected to be a serious problem.
        */
        assert( pTree->aData==(char *)&pTree[1] );
        pTree->aData = (char *)sqlite3_malloc64(nReq);
        if( !pTree->aData ){
          return SQLITE_NOMEM;
        }
      }

      if( pTree->zTerm ){
        /* There is no prefix-length field for first term in a node */
        nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
      }

      nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
      memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
      pTree->nData = nData + nSuffix;
      pTree->nEntry++;

      if( isCopyTerm ){
        if( pTree->nMalloc<nTerm ){
          char *zNew = sqlite3_realloc64(pTree->zMalloc, (i64)nTerm*2);
          if( !zNew ){
            return SQLITE_NOMEM;
          }
          pTree->nMalloc = nTerm*2;
          pTree->zMalloc = zNew;
        }
        pTree->zTerm = pTree->zMalloc;
189330
189331
189332
189333
189334
189335
189336
189337
189338
189339
189340
189341
189342
189343
189344
  ** current node. Create a new node (a right-sibling of the current node).
  ** If this is the first node in the tree, the term is added to it.
  **
  ** Otherwise, the term is not added to the new node, it is left empty for
  ** now. Instead, the term is inserted into the parent of pTree. If pTree
  ** has no parent, one is created here.
  */
  pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
  if( !pNew ){
    return SQLITE_NOMEM;
  }
  memset(pNew, 0, sizeof(SegmentNode));
  pNew->nData = 1 + FTS3_VARINT_MAX;
  pNew->aData = (char *)&pNew[1];








|







189435
189436
189437
189438
189439
189440
189441
189442
189443
189444
189445
189446
189447
189448
189449
  ** current node. Create a new node (a right-sibling of the current node).
  ** If this is the first node in the tree, the term is added to it.
  **
  ** Otherwise, the term is not added to the new node, it is left empty for
  ** now. Instead, the term is inserted into the parent of pTree. If pTree
  ** has no parent, one is created here.
  */
  pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize);
  if( !pNew ){
    return SQLITE_NOMEM;
  }
  memset(pNew, 0, sizeof(SegmentNode));
  pNew->nData = 1 + FTS3_VARINT_MAX;
  pNew->aData = (char *)&pNew[1];

189468
189469
189470
189471
189472
189473
189474
189475
189476
189477
189478
189479
189480
189481
189482
189483
189484
189485
189486
189487
189488
189489
189490
189491
189492
189493
189494
189495
189496
189497
  const char *zTerm,              /* Pointer to buffer containing term */
  int nTerm,                      /* Size of term in bytes */
  const char *aDoclist,           /* Pointer to buffer containing doclist */
  int nDoclist                    /* Size of doclist in bytes */
){
  int nPrefix;                    /* Size of term prefix in bytes */
  int nSuffix;                    /* Size of term suffix in bytes */
  int nReq;                       /* Number of bytes required on leaf page */
  int nData;
  SegmentWriter *pWriter = *ppWriter;

  if( !pWriter ){
    int rc;
    sqlite3_stmt *pStmt;

    /* Allocate the SegmentWriter structure */
    pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
    if( !pWriter ) return SQLITE_NOMEM;
    memset(pWriter, 0, sizeof(SegmentWriter));
    *ppWriter = pWriter;

    /* Allocate a buffer in which to accumulate data */
    pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
    if( !pWriter->aData ) return SQLITE_NOMEM;
    pWriter->nSize = p->nNodeSize;

    /* Find the next free blockid in the %_segments table */
    rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
    if( rc!=SQLITE_OK ) return rc;
    if( SQLITE_ROW==sqlite3_step(pStmt) ){







|








|





|







189573
189574
189575
189576
189577
189578
189579
189580
189581
189582
189583
189584
189585
189586
189587
189588
189589
189590
189591
189592
189593
189594
189595
189596
189597
189598
189599
189600
189601
189602
  const char *zTerm,              /* Pointer to buffer containing term */
  int nTerm,                      /* Size of term in bytes */
  const char *aDoclist,           /* Pointer to buffer containing doclist */
  int nDoclist                    /* Size of doclist in bytes */
){
  int nPrefix;                    /* Size of term prefix in bytes */
  int nSuffix;                    /* Size of term suffix in bytes */
  i64 nReq;                       /* Number of bytes required on leaf page */
  int nData;
  SegmentWriter *pWriter = *ppWriter;

  if( !pWriter ){
    int rc;
    sqlite3_stmt *pStmt;

    /* Allocate the SegmentWriter structure */
    pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter));
    if( !pWriter ) return SQLITE_NOMEM;
    memset(pWriter, 0, sizeof(SegmentWriter));
    *ppWriter = pWriter;

    /* Allocate a buffer in which to accumulate data */
    pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize);
    if( !pWriter->aData ) return SQLITE_NOMEM;
    pWriter->nSize = p->nNodeSize;

    /* Find the next free blockid in the %_segments table */
    rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
    if( rc!=SQLITE_OK ) return rc;
    if( SQLITE_ROW==sqlite3_step(pStmt) ){
189558
189559
189560
189561
189562
189563
189564
189565
189566
189567
189568
189569
189570
189571
189572
  /* Increase the total number of bytes written to account for the new entry. */
  pWriter->nLeafData += nReq;

  /* If the buffer currently allocated is too small for this entry, realloc
  ** the buffer to make it large enough.
  */
  if( nReq>pWriter->nSize ){
    char *aNew = sqlite3_realloc(pWriter->aData, nReq);
    if( !aNew ) return SQLITE_NOMEM;
    pWriter->aData = aNew;
    pWriter->nSize = nReq;
  }
  assert( nData+nReq<=pWriter->nSize );

  /* Append the prefix-compressed term and doclist to the buffer. */







|







189663
189664
189665
189666
189667
189668
189669
189670
189671
189672
189673
189674
189675
189676
189677
  /* Increase the total number of bytes written to account for the new entry. */
  pWriter->nLeafData += nReq;

  /* If the buffer currently allocated is too small for this entry, realloc
  ** the buffer to make it large enough.
  */
  if( nReq>pWriter->nSize ){
    char *aNew = sqlite3_realloc64(pWriter->aData, nReq);
    if( !aNew ) return SQLITE_NOMEM;
    pWriter->aData = aNew;
    pWriter->nSize = nReq;
  }
  assert( nData+nReq<=pWriter->nSize );

  /* Append the prefix-compressed term and doclist to the buffer. */
189583
189584
189585
189586
189587
189588
189589
189590
189591
189592
189593
189594
189595
189596
189597
  /* Save the current term so that it can be used to prefix-compress the next.
  ** If the isCopyTerm parameter is true, then the buffer pointed to by
  ** zTerm is transient, so take a copy of the term data. Otherwise, just
  ** store a copy of the pointer.
  */
  if( isCopyTerm ){
    if( nTerm>pWriter->nMalloc ){
      char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
      if( !zNew ){
        return SQLITE_NOMEM;
      }
      pWriter->nMalloc = nTerm*2;
      pWriter->zMalloc = zNew;
      pWriter->zTerm = zNew;
    }







|







189688
189689
189690
189691
189692
189693
189694
189695
189696
189697
189698
189699
189700
189701
189702
  /* Save the current term so that it can be used to prefix-compress the next.
  ** If the isCopyTerm parameter is true, then the buffer pointed to by
  ** zTerm is transient, so take a copy of the term data. Otherwise, just
  ** store a copy of the pointer.
  */
  if( isCopyTerm ){
    if( nTerm>pWriter->nMalloc ){
      char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2);
      if( !zNew ){
        return SQLITE_NOMEM;
      }
      pWriter->nMalloc = nTerm*2;
      pWriter->zMalloc = zNew;
      pWriter->zTerm = zNew;
    }
189891
189892
189893
189894
189895
189896
189897
189898
189899
189900
189901
189902
189903
189904
189905
189906
189907
189908
189909
189910
**
** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
** trying to resize the buffer, return SQLITE_NOMEM.
*/
static int fts3MsrBufferData(
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
  char *pList,
  int nList
){
  if( nList>pMsr->nBuffer ){
    char *pNew;
    pMsr->nBuffer = nList*2;
    pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
    if( !pNew ) return SQLITE_NOMEM;
    pMsr->aBuffer = pNew;
  }

  assert( nList>0 );
  memcpy(pMsr->aBuffer, pList, nList);
  return SQLITE_OK;







|




|







189996
189997
189998
189999
190000
190001
190002
190003
190004
190005
190006
190007
190008
190009
190010
190011
190012
190013
190014
190015
**
** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
** trying to resize the buffer, return SQLITE_NOMEM.
*/
static int fts3MsrBufferData(
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
  char *pList,
  i64 nList
){
  if( nList>pMsr->nBuffer ){
    char *pNew;
    pMsr->nBuffer = nList*2;
    pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, pMsr->nBuffer);
    if( !pNew ) return SQLITE_NOMEM;
    pMsr->aBuffer = pNew;
  }

  assert( nList>0 );
  memcpy(pMsr->aBuffer, pList, nList);
  return SQLITE_OK;
189952
189953
189954
189955
189956
189957
189958
189959
189960
189961
189962
189963
189964
189965
189966
        rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
        j++;
      }
      if( rc!=SQLITE_OK ) return rc;
      fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);

      if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
        rc = fts3MsrBufferData(pMsr, pList, nList+1);
        if( rc!=SQLITE_OK ) return rc;
        assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
        pList = pMsr->aBuffer;
      }

      if( pMsr->iColFilter>=0 ){
        fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);







|







190057
190058
190059
190060
190061
190062
190063
190064
190065
190066
190067
190068
190069
190070
190071
        rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
        j++;
      }
      if( rc!=SQLITE_OK ) return rc;
      fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);

      if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
        rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1);
        if( rc!=SQLITE_OK ) return rc;
        assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
        pList = pMsr->aBuffer;
      }

      if( pMsr->iColFilter>=0 ){
        fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
190089
190090
190091
190092
190093
190094
190095
190096
190097
190098
190099
190100
190101
190102
190103
190104
190105
190106
190107
    pCsr->apSegment[i]->nOffsetList = 0;
    pCsr->apSegment[i]->iDocid = 0;
  }

  return SQLITE_OK;
}

static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, int nReq){
  if( nReq>pCsr->nBuffer ){
    char *aNew;
    pCsr->nBuffer = nReq*2;
    aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
    if( !aNew ){
      return SQLITE_NOMEM;
    }
    pCsr->aBuffer = aNew;
  }
  return SQLITE_OK;
}







|



|







190194
190195
190196
190197
190198
190199
190200
190201
190202
190203
190204
190205
190206
190207
190208
190209
190210
190211
190212
    pCsr->apSegment[i]->nOffsetList = 0;
    pCsr->apSegment[i]->iDocid = 0;
  }

  return SQLITE_OK;
}

static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){
  if( nReq>pCsr->nBuffer ){
    char *aNew;
    pCsr->nBuffer = nReq*2;
    aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer);
    if( !aNew ){
      return SQLITE_NOMEM;
    }
    pCsr->aBuffer = aNew;
  }
  return SQLITE_OK;
}
190184
190185
190186
190187
190188
190189
190190
190191

190192
190193
190194
190195
190196
190197
190198
    if( nMerge==1
     && !isIgnoreEmpty
     && !isFirst
     && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
    ){
      pCsr->nDoclist = apSegment[0]->nDoclist;
      if( fts3SegReaderIsPending(apSegment[0]) ){
        rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);

        pCsr->aDoclist = pCsr->aBuffer;
      }else{
        pCsr->aDoclist = apSegment[0]->aDoclist;
      }
      if( rc==SQLITE_OK ) rc = SQLITE_ROW;
    }else{
      int nDoclist = 0;           /* Size of doclist */







|
>







190289
190290
190291
190292
190293
190294
190295
190296
190297
190298
190299
190300
190301
190302
190303
190304
    if( nMerge==1
     && !isIgnoreEmpty
     && !isFirst
     && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
    ){
      pCsr->nDoclist = apSegment[0]->nDoclist;
      if( fts3SegReaderIsPending(apSegment[0]) ){
        rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist,
                               (i64)pCsr->nDoclist);
        pCsr->aDoclist = pCsr->aBuffer;
      }else{
        pCsr->aDoclist = apSegment[0]->aDoclist;
      }
      if( rc==SQLITE_OK ) rc = SQLITE_ROW;
    }else{
      int nDoclist = 0;           /* Size of doclist */
190237
190238
190239
190240
190241
190242
190243
190244

190245
190246
190247
190248
190249
190250
190251
          }else{
            if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
            iDelta = (i64)((u64)iDocid - (u64)iPrev);
          }

          nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);

          rc = fts3GrowSegReaderBuffer(pCsr, nByte+nDoclist+FTS3_NODE_PADDING);

          if( rc ) return rc;

          if( isFirst ){
            char *a = &pCsr->aBuffer[nDoclist];
            int nWrite;

            nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);







|
>







190343
190344
190345
190346
190347
190348
190349
190350
190351
190352
190353
190354
190355
190356
190357
190358
          }else{
            if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
            iDelta = (i64)((u64)iDocid - (u64)iPrev);
          }

          nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);

          rc = fts3GrowSegReaderBuffer(pCsr,
                                   (i64)nByte+nDoclist+FTS3_NODE_PADDING);
          if( rc ) return rc;

          if( isFirst ){
            char *a = &pCsr->aBuffer[nDoclist];
            int nWrite;

            nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
190263
190264
190265
190266
190267
190268
190269
190270
190271
190272
190273
190274
190275
190276
190277
            }
          }
        }

        fts3SegReaderSort(apSegment, nMerge, j, xCmp);
      }
      if( nDoclist>0 ){
        rc = fts3GrowSegReaderBuffer(pCsr, nDoclist+FTS3_NODE_PADDING);
        if( rc ) return rc;
        memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING);
        pCsr->aDoclist = pCsr->aBuffer;
        pCsr->nDoclist = nDoclist;
        rc = SQLITE_ROW;
      }
    }







|







190370
190371
190372
190373
190374
190375
190376
190377
190378
190379
190380
190381
190382
190383
190384
            }
          }
        }

        fts3SegReaderSort(apSegment, nMerge, j, xCmp);
      }
      if( nDoclist>0 ){
        rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING);
        if( rc ) return rc;
        memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING);
        pCsr->aDoclist = pCsr->aBuffer;
        pCsr->nDoclist = nDoclist;
        rc = SQLITE_ROW;
      }
    }
190976
190977
190978
190979
190980
190981
190982
190983
190984
190985
190986
190987
190988
190989
190990
** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
** to reflect the new size of the pBlob->a[] buffer.
*/
static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
  if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
    int nAlloc = nMin;
    char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc);
    if( a ){
      pBlob->nAlloc = nAlloc;
      pBlob->a = a;
    }else{
      *pRc = SQLITE_NOMEM;
    }
  }







|







191083
191084
191085
191086
191087
191088
191089
191090
191091
191092
191093
191094
191095
191096
191097
** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
** to reflect the new size of the pBlob->a[] buffer.
*/
static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
  if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
    int nAlloc = nMin;
    char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc);
    if( a ){
      pBlob->nAlloc = nAlloc;
      pBlob->a = a;
    }else{
      *pRc = SQLITE_NOMEM;
    }
  }
191773
191774
191775
191776
191777
191778
191779
191780
191781
191782
191783
191784
191785
191786
191787
  if( rc==SQLITE_OK ){
    int rc2;
    sqlite3_bind_int64(pSelect, 1, iAbsLevel);
    while( SQLITE_ROW==sqlite3_step(pSelect) ){
      if( nIdx>=nAlloc ){
        int *aNew;
        nAlloc += 16;
        aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int));
        if( !aNew ){
          rc = SQLITE_NOMEM;
          break;
        }
        aIdx = aNew;
      }
      aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);







|







191880
191881
191882
191883
191884
191885
191886
191887
191888
191889
191890
191891
191892
191893
191894
  if( rc==SQLITE_OK ){
    int rc2;
    sqlite3_bind_int64(pSelect, 1, iAbsLevel);
    while( SQLITE_ROW==sqlite3_step(pSelect) ){
      if( nIdx>=nAlloc ){
        int *aNew;
        nAlloc += 16;
        aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int));
        if( !aNew ){
          rc = SQLITE_NOMEM;
          break;
        }
        aIdx = aNew;
      }
      aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
192147
192148
192149
192150
192151
192152
192153
192154
192155
192156
192157
192158
192159
192160
192161
  int nSeg = 0;                   /* Number of input segments */
  sqlite3_int64 iAbsLevel = 0;    /* Absolute level number to work on */
  Blob hint = {0, 0, 0};          /* Hint read from %_stat table */
  int bDirtyHint = 0;             /* True if blob 'hint' has been modified */

  /* Allocate space for the cursor, filter and writer objects */
  const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
  pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc);
  if( !pWriter ) return SQLITE_NOMEM;
  pFilter = (Fts3SegFilter *)&pWriter[1];
  pCsr = (Fts3MultiSegReader *)&pFilter[1];

  rc = fts3IncrmergeHintLoad(p, &hint);
  while( rc==SQLITE_OK && nRem>0 ){
    const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;







|







192254
192255
192256
192257
192258
192259
192260
192261
192262
192263
192264
192265
192266
192267
192268
  int nSeg = 0;                   /* Number of input segments */
  sqlite3_int64 iAbsLevel = 0;    /* Absolute level number to work on */
  Blob hint = {0, 0, 0};          /* Hint read from %_stat table */
  int bDirtyHint = 0;             /* True if blob 'hint' has been modified */

  /* Allocate space for the cursor, filter and writer objects */
  const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
  pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc);
  if( !pWriter ) return SQLITE_NOMEM;
  pFilter = (Fts3SegFilter *)&pWriter[1];
  pCsr = (Fts3MultiSegReader *)&pFilter[1];

  rc = fts3IncrmergeHintLoad(p, &hint);
  while( rc==SQLITE_OK && nRem>0 ){
    const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
192783
192784
192785
192786
192787
192788
192789
192790
192791
192792
192793
192794
192795
192796
192797
192798
192799
192800
192801
192802
192803
192804
192805
192806
192807
192808
192809
192810
192811
192812
192813
192814
192815
192816
192817
  *ppData = 0;
  *pnData = 0;

  if( p->pList==0 ){
    return SQLITE_OK;
  }

  pRet = (char *)sqlite3_malloc(p->pList->nData);
  if( !pRet ) return SQLITE_NOMEM;

  nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
  *pnData = p->pList->nData - nSkip;
  *ppData = pRet;

  memcpy(pRet, &p->pList->aData[nSkip], *pnData);
  return SQLITE_OK;
}

/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
SQLITE_PRIVATE int sqlite3Fts3DeferToken(
  Fts3Cursor *pCsr,               /* Fts3 table cursor */
  Fts3PhraseToken *pToken,        /* Token to defer */
  int iCol                        /* Column that token must appear in (or -1) */
){
  Fts3DeferredToken *pDeferred;
  pDeferred = sqlite3_malloc(sizeof(*pDeferred));
  if( !pDeferred ){
    return SQLITE_NOMEM;
  }
  memset(pDeferred, 0, sizeof(*pDeferred));
  pDeferred->pToken = pToken;
  pDeferred->pNext = pCsr->pDeferred;
  pDeferred->iCol = iCol;







|



















|







192890
192891
192892
192893
192894
192895
192896
192897
192898
192899
192900
192901
192902
192903
192904
192905
192906
192907
192908
192909
192910
192911
192912
192913
192914
192915
192916
192917
192918
192919
192920
192921
192922
192923
192924
  *ppData = 0;
  *pnData = 0;

  if( p->pList==0 ){
    return SQLITE_OK;
  }

  pRet = (char *)sqlite3_malloc64(p->pList->nData);
  if( !pRet ) return SQLITE_NOMEM;

  nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
  *pnData = p->pList->nData - nSkip;
  *ppData = pRet;

  memcpy(pRet, &p->pList->aData[nSkip], *pnData);
  return SQLITE_OK;
}

/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
SQLITE_PRIVATE int sqlite3Fts3DeferToken(
  Fts3Cursor *pCsr,               /* Fts3 table cursor */
  Fts3PhraseToken *pToken,        /* Token to defer */
  int iCol                        /* Column that token must appear in (or -1) */
){
  Fts3DeferredToken *pDeferred;
  pDeferred = sqlite3_malloc64(sizeof(*pDeferred));
  if( !pDeferred ){
    return SQLITE_NOMEM;
  }
  memset(pDeferred, 0, sizeof(*pDeferred));
  pDeferred->pToken = pToken;
  pDeferred->pNext = pCsr->pDeferred;
  pDeferred->iCol = iCol;
204985
204986
204987
204988
204989
204990
204991
204992

204993
204994
204995
204996
204997
204998
204999
205000
    if( !zPattern ){
      return;
    }
    pExpr = uregex_open(zPattern, -1, 0, 0, &status);

    if( U_SUCCESS(status) ){
      sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
    }else{

      assert(!pExpr);
      icuFunctionError(p, "uregex_open", status);
      return;
    }
  }

  /* Configure the text that the regular expression operates on. */
  uregex_setText(pExpr, zString, -1, &status);







|
>
|







205092
205093
205094
205095
205096
205097
205098
205099
205100
205101
205102
205103
205104
205105
205106
205107
205108
    if( !zPattern ){
      return;
    }
    pExpr = uregex_open(zPattern, -1, 0, 0, &status);

    if( U_SUCCESS(status) ){
      sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
      pExpr = sqlite3_get_auxdata(p, 0);
    }
    if( !pExpr ){
      icuFunctionError(p, "uregex_open", status);
      return;
    }
  }

  /* Configure the text that the regular expression operates on. */
  uregex_setText(pExpr, zString, -1, &status);
236875
236876
236877
236878
236879
236880
236881
236882
236883
236884
236885
236886
236887
236888
236889
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2022-06-25 17:20:36 bee9903df5c89823e4e285fa1a56f20c8b0408d55bd74dbf71ea61e993da6dc9", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){







|







236983
236984
236985
236986
236987
236988
236989
236990
236991
236992
236993
236994
236995
236996
236997
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2022-09-28 19:14:01 f25cf63471cbed1edb27591e57fead62550d4046dbdcb61312288f0f6f24c646", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){